Optimizing Neural Networks with Multi-Objective Bayesian Optimization and Augmented Random Search

Workshop on Optimization and Machine Learning, March 2023 Mark Deutel, Georgios Kontes, Christopher Mutschler, and Jürgen Teich

Motivation

Problem

- To enable DNN deployment at the edge, there are often tight resource constraints that can be met by network pruning, weight quantization, and other graph-based and algorithmic optimizations¹ that can be controlled by hyperparameters.
- However, optimizing the assignment of values to these hyperparameters, i.e., solving a multi-objective optimization problem, is expensive because the DNN training and compression pipeline must be executed once for each possible combination of parameters.

Goal

- Use Multi-Objective Bayesian Optimization² (MoBOpt) to enable optimized DNN deployment with a limited search budget.
- Investigate and improve MoBOpt strategies such as ParEGO³, for which we observed that in some situations they fail to reliably find the global optimum.

Contribution

We propose to use an ensemble of competing local Reinforcement Learning (RL) agents, which we train on different parts of the surrogate model using Augmented Random Search⁴ (ARS) to more effectively exploit their encoded knowledge of the target space.

- Collect rewards $r(\pi_{l,i,+}(x))$ and $r(\pi_{l,i,-}(x))$ by scaling objectives to a single one using Chebyshev scalarization³ and compute the Expected Improvement² (EI).
- Evaluate EI empirically using Monte Carlo Sampling and the reparametrization trick⁵
- Sort the N directions by max{ $r(\pi_{l,i,+}(x)), r(\pi_{l,i,-}(x))$ } and than update the MLP weights using a top-*K* selection.

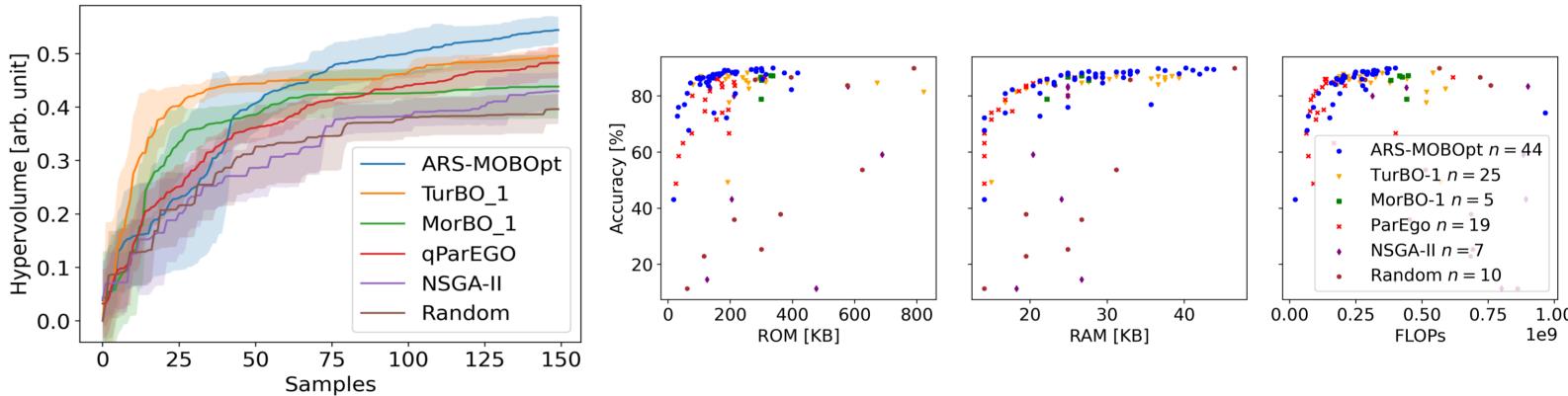
$$\Theta_{l,i+1} = \Theta_{l,i} + \frac{\alpha}{K\sigma_R} \sum_{k=1}^{K} \left(r(\pi_{l,j,+}(x)) - r(\pi_{l,j,-}(x)) \right) \varphi_k$$

where σ_R is the standard deviation of the reward used in the update step

• Validate trained policies π_i and suggest hyperparameters proposed by the best performing policy to be evaluated next by the function evaluators (outer optimization loop).

Experiments

Experiment 1: ResNet18, CIFAR10



We show experimentally that we can improve on several existing MoBOpt and evolutionary strategies for two different datasets and DNN architectures.

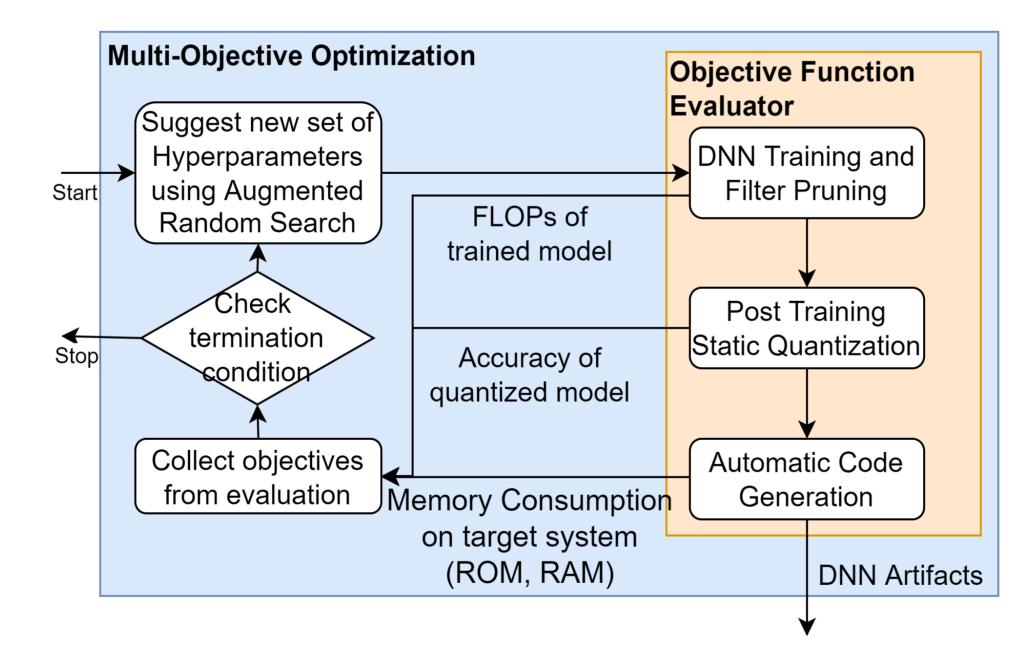


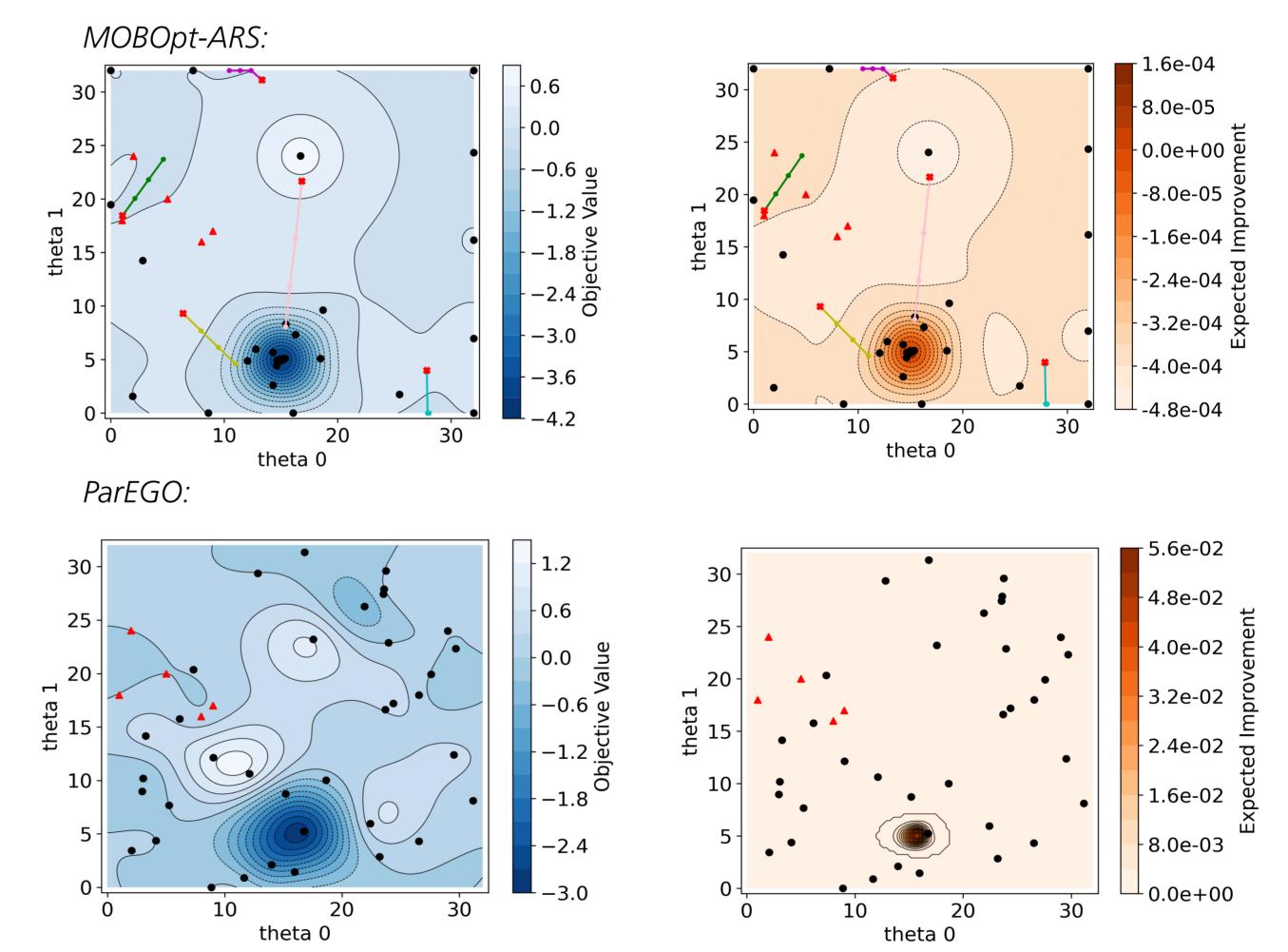
Figure 1. Overview of our RL-based multi-objective Bayesian DNN optimization approach.

Method

- Perform optimization of the objective function $f(x) = [f_1(x), \dots, f_n(x)]$ by sampling sets of hyperparameters until the search budget is exhausted.
- For each sample, perform a nested optimization on the Bayesian surrogate model fitted by maximising the marginal likelihood of previous evaluations of f(x). Use a Latin hypercube during the first samples to obtain an initial prior.

Figure 2. Hypervolume and feasible Pareto fronts of optimizations performed for two problems (ResNet18, CIFAR10 and MobileNetV3, DaLiAc) with a search budget of 150 samples and 5 seeds each.

Experiment 2: Synthetic Problem



- Train each competing local MLP RL policy π_l on different parts of the search space using the centers of *l*-means clusters of the Pareto-front as starting points. For each training step $i \dots$
 - Sample directions $\varphi_1 \varphi_2, \dots, \varphi_N \in \mathbb{R}^{n \times m}$ with i.i.d. standard normal entries.
 - Perform $j \in \{1, 2, ..., N\}$ rollouts over the horizon H from the GP using
 - $\pi_{l,j,+}(x) = (\Theta_l + \nu \varphi_j)$ $\pi_{l,j,-}(x) = \left(\Theta_l - \nu\varphi_j\right)$

Ground Truth:

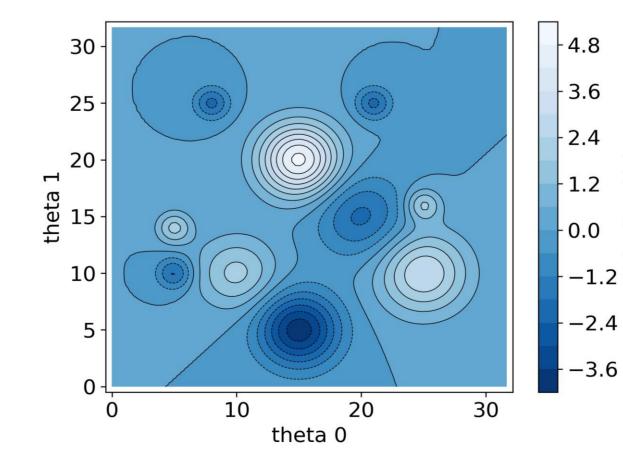


Figure 3. Topography of the objective value and the expected improvement for MOBOpt-ARS and ParEGO after a total of 40 samples, given an initial Value prior of 5 samples, marked as red triangles. - 0.0 Opjective - -1.2 The global minimum can be found at $\theta_0 = 15$ and $\theta_1 = 5$. For MOBOpt-ARS, the rollouts for all competing trained policies are shown as lines with their starting points marked by red crosses.

- 1. Deutel M., Woller P., Mutschler C., Teich J., Energy-efficient Deployment of Deep Learning Applications on Cortex-M based Microcontrollers using Deep Compression, MBMV'23, Freiburg, 23. March 2023 - 24. March 2023
- 2. Mockus, J., On Bayesian methods for seeking the extremum. Optimization Techniques IFIP Technical Conference. pp. 400–404. 1975.
- 3. Knowles, J., ParEGO: a hybrid algorithm with on-line landscape approximation for expensive multiobjective optimization problems, IEEE Transactions on Evolutionary Computation, vol. 10, no. 1, pp. 50-66, Feb. 2006
- 4. Mania, H., Guy, A., and Recht, B., Simple random search of static linear policies is competitive for reinforcement learning, Advances in Neural Information Processing Systems (NeurIPS), 2018.
- 5. Wilson J. T., Moriconi R., Hutter F., Deisenroth M. P.. The Reparameterization Trick for Acquisition Functions. NeurIPS Workshop on Bayesian Optimization, 2017.

