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Motivation

Problem

 To enable DNN deployment at the edge, there are often tight resource 

constraints that can be met by network pruning, weight quantization, and 

other graph-based and algorithmic optimizations1 that can be controlled by 

hyperparameters.

 However, optimizing the assignment of values to these hyperparameters, i.e., 

solving a multi-objective optimization problem, is expensive because the DNN 

training and compression pipeline must be executed once for each possible 

combination of parameters.

Goal

 Use Multi-Objective Bayesian Optimization2 (MoBOpt) to enable optimized 

DNN deployment with a limited search budget.

 Investigate and improve MoBOpt strategies such as ParEGO3, for which we 

observed that in some situations they fail to reliably find the global optimum.

Contribution

 We propose to use an ensemble of competing local Reinforcement Learning 

(RL) agents, which we train on different parts of the surrogate model using 

Augmented Random Search4 (ARS) to more effectively exploit their encoded 

knowledge of the target space.

 We show experimentally that we can improve on several existing MoBOpt

and evolutionary strategies for two different datasets and DNN architectures.

Experiments

Experiment 1: ResNet18, CIFAR10

Figure 1. Overview of our RL-based multi-objective Bayesian DNN optimization approach.

Method

 Perform optimization of the objective function 𝑓 𝑥 = [𝑓1 𝑥 ,… , 𝑓𝑛 𝑥 ] by 

sampling sets of hyperparameters until the search budget is exhausted.

 For each sample, perform a nested optimization on the Bayesian surrogate 

model fitted by maximising the marginal likelihood of previous evaluations of 

𝑓(𝑥). Use a Latin hypercube during the first samples to obtain an initial prior.

 Train each competing local MLP RL policy 𝜋𝑙 on different parts of the search 

space using the centers of 𝑙-means clusters of the Pareto-front as starting 

points. For each training step 𝑖…

 Sample directions 𝜑1 𝜑2, … , 𝜑𝑁 ∈ 𝑅𝑛×𝑚 with i.i.d. standard normal entries.

 Perform j ∈ {1,2, … ,𝑁} rollouts over the horizon H from the GP using

𝜋𝑙,𝑗,+ 𝑥 = (Θ𝑙 + 𝜈𝜑𝑗)

𝜋𝑙,𝑗,− 𝑥 = Θ𝑙 − 𝜈𝜑𝑗

Experiment 2: Synthetic Problem

Figure 2. Hypervolume and feasible Pareto fronts of optimizations performed for two problems (ResNet18, 

CIFAR10 and MobileNetV3, DaLiAc) with a search budget of 150 samples and 5 seeds each.

 Collect rewards 𝑟 𝜋𝑙,𝑗,+(𝑥) and 𝑟 𝜋𝑙,𝑗,−(𝑥) by scaling objectives to a single one 

using Chebyshev scalarization3 and compute the Expected Improvement2 (EI).

 Evaluate EI empirically using Monte Carlo Sampling and the reparametrization trick5

 Sort the 𝑁 directions by max{𝑟 𝜋𝑙,𝑗,+(𝑥) , 𝑟 𝜋𝑙,𝑗,−(𝑥) } and than update the MLP 

weights using a top-𝐾 selection.

Θ𝑙.𝑖+1 = Θ𝑙,𝑖 +
𝛼

𝐾𝜎𝑅


𝑘=1

𝐾

𝑟 𝜋𝑙,𝑗,+(𝑥) − 𝑟 𝜋𝑙,𝑗,−(𝑥) 𝜑𝑘

where  𝜎𝑅 is the standard deviation of the reward used in the update step

 Validate trained policies 𝜋𝑖 and suggest hyperparameters proposed by the best 

performing policy to be evaluated next by the function evaluators (outer 

optimization loop).

MOBOpt-ARS:

ParEGO:

Ground Truth:

Figure 3. Topography of the objective value and the 

expected improvement for MOBOpt-ARS and 

ParEGO after a total of 40 samples, given an initial 

prior of 5 samples, marked as red triangles.

The global minimum can be found at 𝜃0 = 15 and 

𝜃1 = 5. For MOBOpt-ARS, the rollouts for all 

competing trained policies are shown as lines with 

their starting points marked by red crosses.


