

Multi-Objective Bayesian Optimization of Deep Neural Networks for Deployment on Microcontrollers

Lehrstuhl für Informatik 12 (Hardware-Software-Co-Design)

Friedrich-Alexander-Universität Erlangen-Nürnberg Mark Deutel, Frank Hannig, and Jürgen Teich

Motivation

Efficiency

- Processing of data close to the sensor
- Re-usage of (hardware) resources required to drive the sensor

Reliability

- No communication via error prone network required
- Short, predictable "round-trip time"

Cost

- Exploitation of already available cheap consumer-grade hardware
- Low energy footprint

Privacy

TinyML

- Possibly confidential data is processed on the sensor node
- No connection to external cloud or server required

Motivation

DNN Deployment on Microcontrollers – An easy task?

Deep Neural Network Architectures ¹								
Metrics	AlexNet	VGG 16	ResNet 50					
# Layers	8	16	54					
Total Weights	61 M	138 M	25.5 M					
Total MACs*	724 M	15.5 G	3.9 G					

1. Sze, Vivienne, Yu-Hsin Chen, Tien-Ju Yang, and Joel Emer. "Efficient Processing of Deep Neural Networks: A Tutorial and Survey". 2017.

Target Micro Controllers								
Metrics	Raspberry Pi Pico	Arduino Nano 33 BLE Sense						
Processor	ARM Cortex M0+	ARM Cortex M4						
Clock Speed	133 MHz	64 MHz						
Flash memory	2 MB	1 MB						
SRAM	256 KB	256 KB						

Significant gap between DNN requirements and available resources

- Low processor speed vs. large number of mathematical operations
- Strict memory limitations vs. large number of weights and big inputs/feature maps
- High precision floating point datatypes vs. hardware often focused on integer arithmetic

* Multiply-Accumulate Operations

Motivation

DNN Deployment on Microcontrollers – An Optimization Problem

Deployment of Deep Neural Networks on Microcontrollers

A Fully-Automated End-to-End DSE Pipeline for DNN Deployment¹

Suggest next set of Hyperparameters (parameter space) using Multi-Objective Optimization based on performance metrics (objective space: accuracy, ROM, RAM, FLOPS)

1. Deutel, Mark, et al. "Deployment of Energy-Efficient Deep Learning Models on Cortex-M based Microcontrollers using Deep Compression." arXiv preprint arXiv:2205.10369 (2022).

Multi-Objective Bayesian Optimization of Deep Neural Networks for Deployment on Microcontrollers

Agenda

- Deployment of DNNs on Microcontroller Targets
- Network Pruning
- Weight Quantization
- Microcontroller Deployment
- Optimizing DNNs using Multi-Objective Optimization
 - Introduction to Multi-Objective Optimization
 - Multi-Objective Bayesian Optimization
 - Evaluation of Use-Cases
- Conclusion

Deployment of DNNs on Microcontroller Targets

Network Pruning

Pruning Strategy

Understanding: Neural Networks are extremely over-parametrized and have a lot of redundancies in their parameters

Element-Wise (Unstructured) Pruning¹

- Set single weights to zero
- Sparse data structures remain at the end of training

Structured Pruning²

- Set whole structures of weights to zero
- Structures (and their dependencies) can be removed at the end of training

- 1. LeCun, Yann, John S Denker, and Sara A Solla. "Optimal Brain Damage", 1989.
- 2. Anwar, Sajid, Kyuyeon Hwang, and Wonyong Sung. "Structured Pruning of Deep Convolutional Neural Networks". 2015.

Network Pruning

Pruning Heuristics

- Are used as an approximation to decide which structures/elements to remove
 - Magnitude/L-Norm-based¹,
 - Gradient-based²,
 - Average percentage of Zeros³ (ApoZ) in activation tensors
 - Attribution-based heuristics⁴ (Explainable AI)

- 1. Han, Song, Jeff Pool, John Tran, und William J. Dally. "Learning both Weights and Connections for Efficient Neural Networks". 2015.
- 2. Molchanov, Pavlo, Stephen Tyree, Tero Karras, Timo Aila, and Jan Kautz. "Pruning Convolutional Neural Networks for Resource Efficient Inference". 2017.
- 3. Hu, Hengyuan, Rui Peng, Yu-Wing Tai, and Chi-Keung Tang. "Network Trimming: A Data-Driven Neuron Pruning Approach towards Efficient Deep Architectures". 2016.
- 4. Sabih, Muhammad, Frank Hannig, and Juergen Teich. "Utilizing explainable AI for quantization and pruning of deep neural networks." 2020.

Network Pruning

Pruning Schedule

- Defines when and how often pruning is applied during training
- Iterative Pruning:
 - Prune multiple times during training
 - Increase sparsity starting with a low value
 - Automated Gradual Pruning¹ (AGP) algorithm
- One-Shot Pruning:
 - Prune one time at the end of training
 - Enforce all sparsity at once

1. Zhu, Michael, and Suyog Gupta. "To prune, or not to prune: exploring the efficacy of pruning for model compression". 2017.

Quantization Schema

Instead of using high-precision floating-point arithmetic to store trained weights, map them to integer space instead

- Affine, linear mapping from 32-bit floating point space to 8-bit unsigned integer space using (trainable) scale and zero point parameters¹
- Both weight and activations tensors can be quantized (i.e. partial and full quantization)

Weight Quantization

Quantization Strategy

Post Training Static Quantization¹

- Perform Quantization once training has finished
- Use evaluation dataset from training to approximate zero points and scales

Quantization Aware Training²

- Fake quantized trainable weights and activations during training
- Use quantized parameters during forward passes to emulate quantization

- 1. Krishnamoorthi, Raghuraman. "Quantizing deep convolutional networks for efficient inference: A whitepaper". 2018.
- 2. Jacob, Benoit, Skirmantas Kligys, Bo Chen, Menglong Zhu, Matthew Tang, Andrew Howard, Hartwig Adam, and Dmitry Kalenichenko. "Quantization and Training of Neural Networks for Efficient Integer-Arithmetic-Only Inference". 2017.

Microcontroller Deployment

Overview

Microcontroller Deployment

Deployment Pipeline

Optimizing DNNs using Multi-Objective Bayesian Optimization

Multi-Objective Optimization

Introduction (1)

 Maximize or minimize some objectives given a set of objective functions that map from parameter to objective space

 $f(x) = [f_1(x), \dots, f_n(x)] \in \mathbb{R}^n, n \ge 2, x \in \mathbb{R}^d$

• There can be an additional set of constraints in the form of

 $g(x) \geq 0 \in \mathbb{R}^{\nu}$

- Usually, there exists no single solution x* that maximizes/minimizes all objectives while also satisfying all constraints
- If a sample A compared to another sample B is equal in all objectives and better in at least one, A Pareto dominates B.
- If a sample is not Pareto-dominated, it is Pareto optimal
- If a sample meets all constraints, it is feasible
- A set of feasible Pareto-optimal samples is called the feasible Pareto front

Passino, K. M. Biomimicry for optimization, control, and automation. Springer Science & Business Media, 2005.

Multi-Objective Optimization

Introduction (2)

- The Hypervolume indicator is a measure of the quality of a (feasible) Pareto front and is calculated relative to a reference point *R*
 - The Hypervolume $h \in \mathbb{R}$ is in [0,1], where a higher Hypervolume value indicates a better coverage of the target space
 - To compare the Hypervolume of two Pareto-Fronts they have to ...
 - a. ... be in the same target space
 - b. ... have the same reference point *R*

Multi-Objective Optimization

Bayesian Optimization¹

- Improve decision making, i.e., suggesting the next parametrization x, by optimizing a surrogate model
- Fit surrogate (Gaussian process) using previous samples (prior)
- Solve optimization problem on surrogate model using an acquisition function
- Suggest next parametrization to be evaluated
- Evaluate posterior of surrogate either analytical or by using Monte-Carlo (MC) sampling²
- Evaluation of the acquisition function requires calculating an integral over the posterior distribution

Expected Improvement¹

 $\mathrm{EI}(X) = \mathbb{E} \max(f(x) - f^*, 0)$

$$\alpha(x) \approx \frac{1}{N} \sum_{i=1}^{N} \max(\mathcal{E}_i - f^*, 0), \mathcal{E}_i \sim \mathbb{P}(f(x)|D)$$

- 1. Mockus, J. On Bayesian methods for seeking the extremum. In Optimization Techniques IFIP Technical Conference, pp. 400–404, 1975.
- 2. Wilson, J. T., Moriconi, R., Hutter, F., and Deisenroth, M. P. The reparameterization trick for acquisition functions. NIPS 2017 Workshop on Bayesian Optimization (BayesOpt 2017), 2017.

Optimizing DNNs using Multi-Objective Bayesian Optimization

Evaluation

- CIFAR10¹ (32x32 RGB image classification) trained with scaled ResNet18²
 - 1.6M initial parameters
 - 3 residual networks (instead of 4)
- DaLiAc³ (daily human activity, time series classification) trained with scaled MobileNetV3⁴
 - 2.3M initial parameters
 - Constant window length of size 1024, one class per window
 - Four sensor nodes with triaxial accelerometers and gyroscopes
- 1. Alex Krizhevsky. "Learning Multiple Layers of Features from Tiny Images". 2009
- 2. He, K., Zhang, X., Ren, S., and Sun, J. "Deep residual learning for image recognition". 2016.
- 3. Leutheuser, H., Schuldhaus, and D., Eskofier, B. M. "Hierarchical, multi-sensor based classification of daily life activities: comparison with state-of-the-art algorithms using a benchmark dataset". 2013.
- 4. Howard, A., Sandler, M., Chu, G., Chen, L.-C., Chen, B., Tan, M., Wang, W., Zhu, Y., Pang, R., Vasudevan, V., Le, Q. V., and Adam, H. "Searching for mobilenetv3". 2019

airplane	the second second	-	X	*	*	2	1	-	-
automobile		1	6	-	The second		-	3-6	-
bird		- 2		1	A	1	1		4
cat			60		1	2	A.	No.	2
deer		1	R	17	X	Ŷ	1	-	
dog	17. A	10		1			T'a)	1	Ter
frog	S			27		1	ST.		5
horse	The set	1	H	P	ICAR	-20	201	6	N
ship	-	derine .	-	MA	-	2	15	-	-
truck		1 share				And a		-	See.

https://www.cs.toronto.edu/~kriz/cifar.html

https://www.mad.tf.fau.de/research/activitynet/daliac-daily-life-activities/

Evaluation

ResNet18, CIFAR10 (1)

Evaluation ResNet18, CIFAR10 (2)

Feasible Pareto fronts for Bayesian and evolutionary solvers (exemplarily)

Constraints: < 1000 KB ROM, < 256 KB RAM, $< 1e^9$ FLOPs

Evaluation

MobileNetV3, DaLiAc (1)

Evaluation

MobileNetV3, DaLiAc (2)

Feasible Pareto fronts for Bayesian and evolutionary solvers (exemplarily)

Constraints: < 1000 KB ROM, < 256 KB RAM, $< 1e^9$ FLOPs

Conclusion

- End-to-end DNN training, compression and deployment pipeline for microcontroller targets
- Network pruning, Weight quantization, automated code generation
- Automated DSE for DNN hyperparameters using multi-objective optimization (AutoML)
- Bayesian Optimization yields improved performance compared to evolutionary approaches in the given search budget
- Optimization is limited by the high cost of the objective function evaluators (especially accuracy!)

Friedrich-Alexander-Universität Technische Fakultät

Thank you for your attention!

Contact: mark.deutel@fau.de