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TinyML – Machine Learning on the Edge

Motivation

Efficiency

• Processing of data close to the 
sensor

• Re-usage of (hardware) resources 
required to drive the sensor

Reliability

• No communication via error prone 
network required

• Short, predictable “round-trip time" 

Cost

• Exploitation of already available 
cheap consumer-grade hardware

• Low energy footprint

Privacy

• Possibly confidential data is 
processed on the sensor node

• No connection to external cloud or 
server required

TinyML
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Motivation

Deep Neural Network Architectures1

Metrics AlexNet VGG 16 ResNet 50

# Layers 8 16 54

Total Weights 61 M 138 M 25.5 M

Total MACs* 724 M 15.5 G 3.9 G

1. Sze, Vivienne, Yu-Hsin Chen, Tien-Ju Yang, and Joel Emer. „Efficient 

Processing of Deep Neural Networks: A Tutorial and Survey“. 2017.

Target Micro Controllers

Metrics Raspberry Pi Pico Arduino Nano 33 

BLE Sense

Processor ARM Cortex M0+ ARM Cortex M4

Clock Speed 133 MHz 64 MHz

Flash memory 2 MB 1 MB

SRAM 256 KB 256 KB

Significant gap between DNN requirements and available resources

• Low processor speed vs. large number of mathematical operations

• Strict memory limitations vs. large number of weights and big inputs/feature maps

• High precision floating point datatypes vs. hardware often focused on integer arithmetic

* Multiply-Accumulate Operations

DNN Deployment on Microcontrollers – An easy task?
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DNN Compression

and Deployment

Energy

Power

Inference Time

Accuracy

ROM
Requirements

RAM
Requirements

Deployment on Target SystemDNN Architecture, Dataset

4

Motivation
DNN Deployment on Microcontrollers – An Optimization Problem

Mark Deutel et. al. | Multi-Objective Bayesian Optimizations of DNNs for Deployment on on Microcontrollers WEML 2023 4



Deployment of Deep Neural Networks on Microcontrollers
A Fully-Automated End-to-End DSE Pipeline for DNN Deployment1

Neural Network 

Pruning

Pruning Strategy

 How to prune?

 What to prune?

 When to prune?

Weight 

Quantization

Quantization Model

 How to perform?

 When to apply?

Deployment on 

Target

Data Representation

 Optimized Memory 

Layout

Target Code Generation

 Convert Graph to Code

 Graph Optimizations

 Algorithmic Optimization

Dataset, 

Model,

Hyperparameter

DNN Training Post Processing

Deployable

Model

Suggest next set of Hyperparameters (parameter space) using Multi-Objective Optimization 

based on performance metrics (objective space: accuracy, ROM, RAM, FLOPS) 

1. Deutel, Mark, et al. "Deployment of Energy-Efficient Deep Learning Models on Cortex-M based Microcontrollers using Deep Compression." arXiv preprint arXiv:2205.10369 (2022).
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Multi-Objective Bayesian Optimization of 
Deep Neural Networks for Deployment on Microcontrollers

Agenda

• Deployment of DNNs on Microcontroller Targets

• Network Pruning

• Weight Quantization

• Microcontroller Deployment

• Optimizing DNNs using Multi-Objective Optimization

• Introduction to Multi-Objective Optimization

• Multi-Objective Bayesian Optimization

• Evaluation of Use-Cases

• Conclusion
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Deployment of DNNs on Microcontroller 
Targets
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Element-Wise (Unstructured) Pruning1 

• Set single weights to zero

• Sparse data structures remain at the end of training

Structured Pruning2

• Set whole structures of weights to zero

• Structures (and their dependencies) can be removed 

at the end of training

Network Pruning
Pruning Strategy

Understanding: Neural Networks are extremely over-parametrized and have a lot of redundancies in their parameters

2 0 4 9

11 2 3 0

2 3 4 5

3 14 9 0

2 0 2 22

11 2 4 0

2 3 4 7

3 14 9 2

2 0 6 0

11 2 9 4

2 3 0 7

0 0 9 2

2 3 4 9

11 2 3 16

2 3 4 5

3 14 9 2

0 0 0 0

11 2 4 0

2 3 4 0

3 14 9 0

2 8 6 1

11 2 9 4

2 3 4 7

3 14 9 2

1. LeCun, Yann, John S Denker, and Sara A Solla. “Optimal Brain Damage“, 1989.

2. Anwar, Sajid, Kyuyeon Hwang, and Wonyong Sung. “Structured Pruning of Deep Convolutional Neural Networks“. 2015.
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• Are used as an approximation to decide which structures/elements to remove

• Magnitude/L-Norm-based1, 

• Gradient-based2, 

• Average percentage of Zeros3 (ApoZ) in activation tensors

• Attribution-based heuristics4 (Explainable AI)

Network Pruning
Pruning Heuristics

1. Han, Song, Jeff Pool, John Tran, und William J. Dally. “Learning both Weights and Connections for Efficient Neural Networks“. 2015.

2. Molchanov, Pavlo, Stephen Tyree, Tero Karras, Timo Aila, and Jan Kautz. “Pruning Convolutional Neural Networks for Resource Efficient Inference“. 2017.

3. Hu, Hengyuan, Rui Peng, Yu-Wing Tai, and Chi-Keung Tang. “Network Trimming: A Data-Driven Neuron Pruning Approach towards Efficient Deep Architectures“. 2016.

4. Sabih, Muhammad, Frank Hannig, and Juergen Teich. “Utilizing explainable AI for quantization and pruning of deep neural networks.“ 2020.
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• Defines when and how often pruning is applied during training

• Iterative Pruning: 

• Prune multiple times during training

• Increase sparsity starting with a low value

• Automated Gradual Pruning1 (AGP) algorithm 

• One-Shot Pruning: 

• Prune one time at the end of training

• Enforce all sparsity at once

Network Pruning
Pruning Schedule

1. Zhu, Michael, and Suyog Gupta. “To prune, or not to prune: exploring the efficacy of pruning for model compression“. 2017.
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Weight Quantization
Quantization Schema

Instead of using high-precision floating-point arithmetic to store trained weights, map them to integer space instead

• Affine, linear mapping from 32-bit floating point space to 8-bit unsigned integer space using (trainable) scale and 

zero point parameters1

• Both weight and activations tensors can be quantized (i.e. partial and full quantization)

𝑣𝑎𝑙𝑢𝑖𝑛𝑡8 = clamp
𝑣𝑎𝑙𝑓𝑝32

𝑠𝑐𝑎𝑙𝑒
+ 𝑧𝑒𝑟𝑜𝑝𝑜𝑖𝑛𝑡

𝑠𝑐𝑎𝑙𝑒 =
𝑑𝑎𝑡𝑎𝑚𝑎𝑥 − 𝑑𝑎𝑡𝑎𝑚𝑖𝑛

255
, 0 ≤ 𝑧𝑒𝑟𝑜𝑝𝑜𝑖𝑛𝑡 ≤ 255

0 255𝑧𝑒𝑟𝑜𝑝𝑜𝑖𝑛𝑡

0 𝑑𝑎𝑡𝑎𝑚𝑎𝑥𝑑𝑎𝑡𝑎𝑚𝑖𝑛

𝑓𝑙𝑜𝑎𝑡32

𝑢𝑖𝑛𝑡8

Standardization of 

activation tensors 

is a great idea

1. see https://onnxruntime.ai/docs/performance/quantization.html
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Post Training Static Quantization1

• Perform Quantization once training has finished

• Use evaluation dataset from training to approximate 

zero points and scales

Quantization Aware Training2

• Fake quantized trainable weights and activations 

during training

• Use quantized parameters during forward passes to 

emulate quantization

Weight Quantization
Quantization Strategy

1. Krishnamoorthi, Raghuraman. „Quantizing deep convolutional networks for efficient inference: A whitepaper“. 2018.

2. Jacob, Benoit, Skirmantas Kligys, Bo Chen, Menglong Zhu, Matthew Tang, Andrew Howard, Hartwig Adam, and Dmitry Kalenichenko. „Quantization and Training of Neural Networks for Efficient Integer-

Arithmetic-Only Inference“. 2017.
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Microcontroller Deployment
Overview

Conversion to 
Intermediate 

Representation

• Convert graph-based (ONNX) model to target-platform-based representation

• Weight tensors        Data segment (Flash utilization)

• Network structure    “Function” Code segment (Flash utilization)

• Activation tensors   Heap (SRAM consumption)

Memory 
Allocation

• Allocate byte arrays for both weight and activation tensors

• Dynamic memory allocation for activation tensors can be avoided by simulating offline

 No malloc required at runtime

Code 
Generation + 
Compilation

• Emit compilable C-code representing the DNN (“ahead-of-time”)

• Compile and link with runtime library (optimized for each target platform)

• Implements common DNN layers based on the ONNX specification
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Microcontroller Deployment
Deployment Pipeline

Mark Deutel et. al. | Multi-Objective Bayesian Optimizations of DNNs for Deployment on Microcontrollers 14WEML 2023

Deployable 

Binary

ONNX Model File 

(Graph-based 

Representation)

Generate C-Code for 

Target System

Code Fragment 

(C-Code File)

Infer Required 

Heap-Size

Fixed Size Data 

Arrays 

(C-Code File)

Graph-based 

Optimizations, 

im2col mapping 

for Conv. Layers

Shape Inference

Conversion to 

Intermediate 

Representation

Intermediate 

Representation 

(Descriptors)
Compile and Link

Runtime 

Library



Optimizing DNNs using Multi-Objective
Bayesian Optimization

Mark Deutel et. al. | Multi-Objective Bayesian Optimizations of DNNs for Deployment on on Microcontrollers 15WEML 2023



• Maximize or minimize some objectives given a set of objective 

functions that map from parameter to objective space 

𝑓 𝑥 = 𝑓1 𝑥 ,… , 𝑓𝑛 𝑥 ∈ ℝ𝑛, 𝑛 ≥ 2, 𝑥 ∈ ℝ𝑑

• There can be an additional set of constraints in the form of 

𝑔 𝑥 ≥ 0 ∈ ℝ𝑣

• Usually, there exists no single solution 𝑥∗ that maximizes/minimizes 

all objectives while also satisfying all constraints

• If a sample 𝐴 compared to another sample 𝐵 is equal in all objectives 

and better in at least one, 𝐴 Pareto dominates 𝐵.

• If a sample is not Pareto-dominated, it is Pareto optimal

• If a sample meets all constraints, it is feasible

• A set of feasible Pareto-optimal samples is called the feasible 

Pareto front

Multi-Objective Optimization
Introduction (1)

16Mark Deutel et. al. | Multi-Objective Bayesian Optimizations of DNNs for Deployment on on Microcontrollers 16WEML 2023

Passino, K. M. Biomimicry for optimization, control, and

automation. Springer Science & Business Media, 2005.



• The Hypervolume indicator is a measure of the quality of a (feasible) 

Pareto front and is calculated relative to a reference point 𝑅

• The Hypervolume ℎ ∈ ℝ is in 0,1 , where a higher Hypervolume

value indicates a better coverage of the target space

• To compare the Hypervolume of two Pareto-Fronts they have to …

a. … be in the same target space

b. … have the same reference point 𝑅

Multi-Objective Optimization
Introduction (2)
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• Improve decision making, i.e., suggesting the next 

parametrization 𝑥, by optimizing a surrogate model

• Fit surrogate (Gaussian process) using previous samples 

(prior)

• Solve optimization problem on surrogate model using an 

acquisition function

• Suggest next parametrization to be evaluated

• Evaluate posterior of surrogate either analytical or by using 

Monte-Carlo (MC) sampling2

• Evaluation of the acquisition function requires calculating an 

integral over the posterior distribution

Multi-Objective Optimization
Bayesian Optimization1

18

https://cds.cern.ch/record/2702355/plots

EI 𝑋 = 𝔼 max(𝑓 𝑥 − 𝑓∗, 0)

𝛼 𝑥 ≈
1

𝑁


𝑖=1

𝑁

max ℇ𝑖 − 𝑓∗, 0 , ℇ𝑖 ∼ ℙ(𝑓(𝑥)|𝐷)
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1. Mǒckus, J. On Bayesian methods for seeking the extremum. In Optimization Techniques IFIP Technical Conference, pp. 400–404, 1975.

2. Wilson, J. T., Moriconi, R., Hutter, F., and Deisenroth, M. P. The reparameterization trick for acquisition functions. NIPS 2017 Workshop on Bayesian Optimization (BayesOpt 2017), 2017.

Expected Improvement1



Optimizing DNNs using Multi-Objective 
Bayesian Optimization
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Objective Function Evaluator

DNN Training and Filter 

Pruning
Weight Quantization

Automatic Code 

Generation

Collect objective values 

from function evaluators

FLOPs of 

trained model

Accuracy of 

quantized model

Memory consumption 

on target system 

(ROM, RAM)

Suggest next set of 

hyperparameters using 

Bayesian OptimizationStart

Check termination 

conditionStop

DNN 

Artifacts, 

Binary



Evaluation
Datasets and Models
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• CIFAR101 (32x32 RGB image classification) trained with scaled 

ResNet182

• 1.6M initial parameters

• 3 residual networks (instead of 4)

• DaLiAc3 (daily human activity, time series classification) trained 

with scaled MobileNetV34

• 2.3M initial parameters

• Constant window length of size 1024, one class per window

• Four sensor nodes with triaxial accelerometers and gyroscopes

https://www.cs.toronto.edu/~kriz/cifar.html

https://www.mad.tf.fau.de/research/activitynet/daliac-daily-life-activities/

1. Alex Krizhevsky. “Learning Multiple Layers of Features from Tiny Images”. 2009

2. He, K., Zhang, X., Ren, S., and Sun, J. “Deep residual learning for image recognition”. 2016.

3. Leutheuser, H., Schuldhaus, and D., Eskofier, B. M. “Hierarchical, multi-sensor based classification of daily life 

activities: comparison with state-of-the-art algorithms using a benchmark dataset”. 2013.

4. Howard, A., Sandler, M., Chu, G., Chen, L.-C., Chen, B., Tan, M., Wang, W., Zhu, Y., Pang, R., Vasudevan, V., 

Le, Q. V., and Adam, H. “Searching for mobilenetv3”. 2019



Evaluation

Hypervolume Improvement for ResNet18, CIFAR10, 

150 samples, 5 seeds each

ResNet18, CIFAR10 (1)
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Evaluation

Feasible Pareto fronts for Bayesian and evolutionary solvers (exemplarily)

ResNet18, CIFAR10 (2)
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Constraints: < 1000 KB ROM, < 256 KB RAM, < 1𝑒9 FLOPs



Evaluation

Hypervolume Improvement for MobileNetV3, DaLiAc, 

150 samples, 5 seeds each
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MobileNetV3, DaLiAc (1)



Evaluation

Feasible Pareto fronts for Bayesian and evolutionary solvers (exemplarily)

Mark Deutel et. al. | Multi-Objective Bayesian Optimizations of DNNs for Deployment on on Microcontrollers 24WEML 2023

Constraints: < 1000 KB ROM, < 256 KB RAM, < 1𝑒9 FLOPs

MobileNetV3, DaLiAc (2)



Conclusion
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Conclusion

• End-to-end DNN training, compression and deployment pipeline for microcontroller targets

• Network pruning, Weight quantization, automated code generation

• Automated DSE for DNN hyperparameters using multi-objective optimization (AutoML)

• Bayesian Optimization yields improved performance compared to evolutionary approaches in the given search budget

• Optimization is limited by the high cost of the objective function evaluators (especially accuracy!)
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Thank you for 

your attention!

Contact: mark.deutel@fau.de


