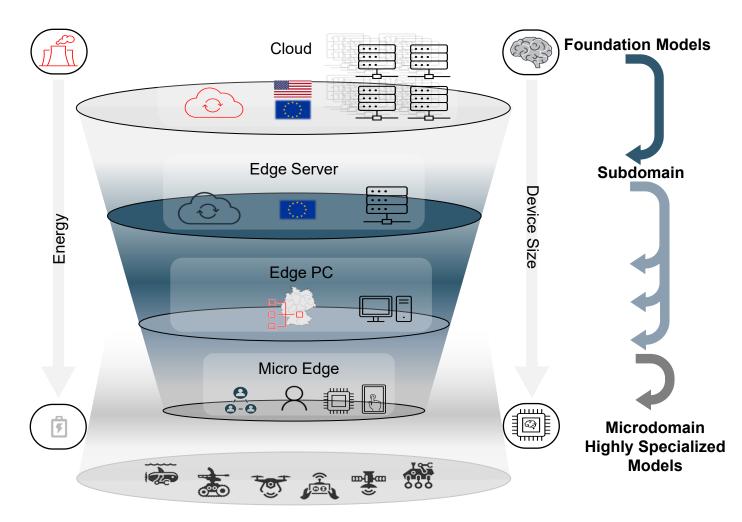


On-Device Training of Deep Neural Networks on Cortex-M Microcontrollers

Deep Learning on Narrow Resources

Mark Deutel 10.10.2025

The Cloud-Edge-Continuum



Quelle: https://stock.adobe.com/de/images/robotics-industry-glyph-icon-set-with-robot-and-bot-technology-artificial-intelligence-ai-machine-learning-ml-automated-and-remote-control-smart-chip-android-toy-and-more-tech-symbols/265786856

Efficient AI – Advantages

Energy Efficient

Re-use of energy-efficient hardware

Fast

Local processing of data directly at the sensor

Efficient Al

Private & Autonomous

No communication to the cloud via an error-prone network

Tiny

No extra space for servers or large industrial PCs required

DNN Deployment on Microcontrollers – An Easy Task?

Deep Neural Network Architectures ¹				
Metrics	AlexNet	VGG 16	ResNet 50	
# Layers	8	16	54	
Total Weights	61 M	138 M	25.5 M	
Total MACs*	724 M	15.5 G	3.9 G	

^{1.} Sze, Vivienne, Yu-Hsin Chen, Tien-Ju Yang, and Joel Emer. "Efficient Processing of Deep Neural Networks: A Tutorial and Survey". 2017.

Target Micro Controllers				
Metrics	Raspberry Pi Pico	Arduino Nano 33 BLE Sense		
Processor	ARM Cortex M0+	ARM Cortex M4		
Clock Speed	133 MHz	64 MHz		
Flash memory	2 MB	1 MB		
SRAM	256 KB	256 KB		

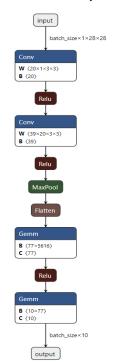
Significant gap between DNN requirements and available resources

- Low processor speed vs. large number of mathematical operations
- Strict memory limitations vs. large number of weights and big inputs/feature maps
- Floating point datatypes vs. hardware often focused on integer arithmetic

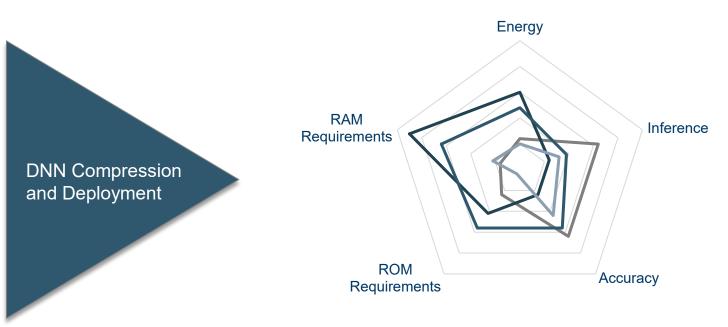
^{*} Multiply-Accumulate Operations

DNN Deployment on Microcontrollers – An Optimization Problem

DNN Architecture, Dataset



Deployment on Target System



DNN Deployment on Microcontrollers – Domain Shift

The world we live in is dynamic and ever-changing. The data used to train a model is highly unlikely to be the same as what it will encounter in the real world.

DNN Deployment on Microcontrollers

Fraunhofer esign

A Fully-Automated End-to-End DSE Pipeline

Training & Compression

Lowering & Mapping

Continual Fine-Tuning

DNN Pruning & Quantization

Pruning

Dataset.

Model,

Hyper-

parameter

- → How to prune?
- → What to prune?
- → When to prune?

Quantization

- → How to perform?
- → When to apply?

Deployment on Target

Data Representation

→ Optimized Memory Layout

Target Code Generation

- → Convert Graph to Code
- → Graph Optimizations
- → Algorithmic Optimization

On-Device Training

[DHM+24a], [DSP+25]

Fully Quantized Training

- → Quantized Backpropagation
- → Partial Gradient Updates

Unsupervised Learning

→ Variational Autoencoder for unsupervised classification

Deployed Model

Suggest next set of Hyperparameters using Multi-Objective Optimization based on accuracy, ROM, RAM, and FLOPS

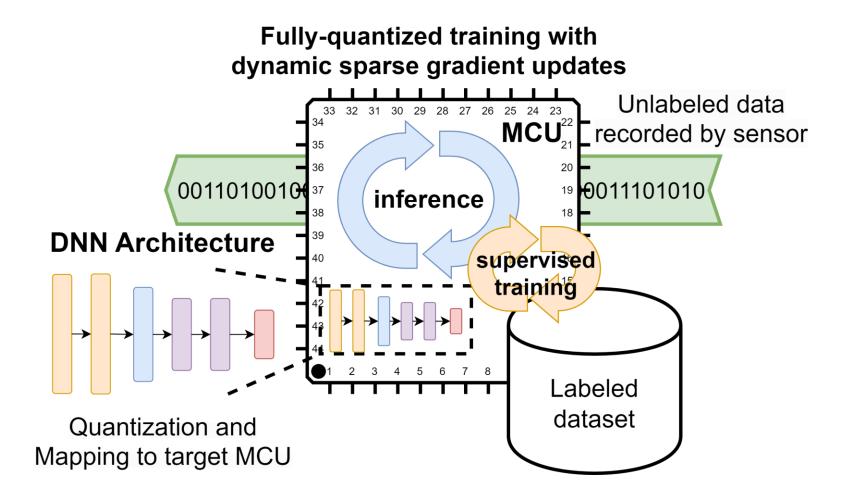
offline online

- Introduction and Motivation
- On-Device Training of DNNs on Microcontrollers
- Unsupervised On-Device Training
- Conclusion

On-Device Training of DNNs on Microcontrollers

Fraunhofer (

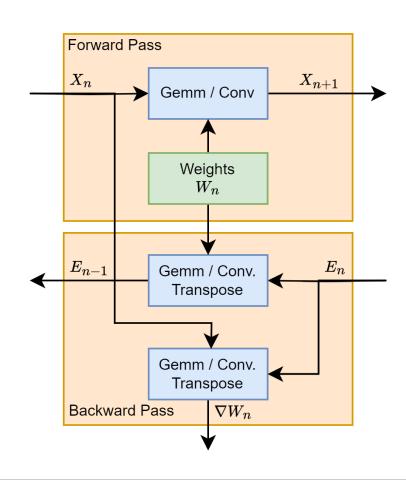
Framework [DHM+24a]



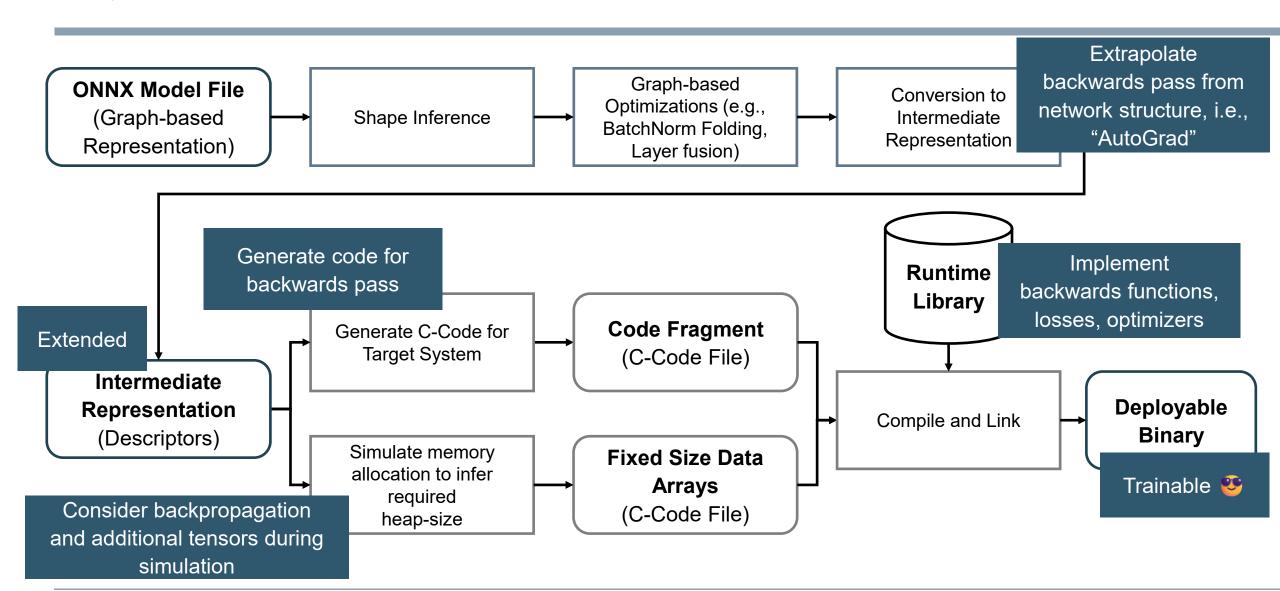
Challenges [DHM+24a]

The main challenge is to handle the additional **computational overhead** and **memory requirements** within the limitation of resource constraint MCUs

- Backpropagation (BP):
 - Requires the calculation of one/two partial derivatives of each $f_l(x)$ (i.e., the function executed in the forward pass)
 - Some tensors from the forward pass need to be saved for backpropagation
- Stochastic Gradient Descent (SGD):
 - Weights are updated over a (mini-)batch of samples
 - Accumulate partial derivatives of each sample in a gradient buffer until one batch is full
- How to get labels required for training?
 - More about this later!

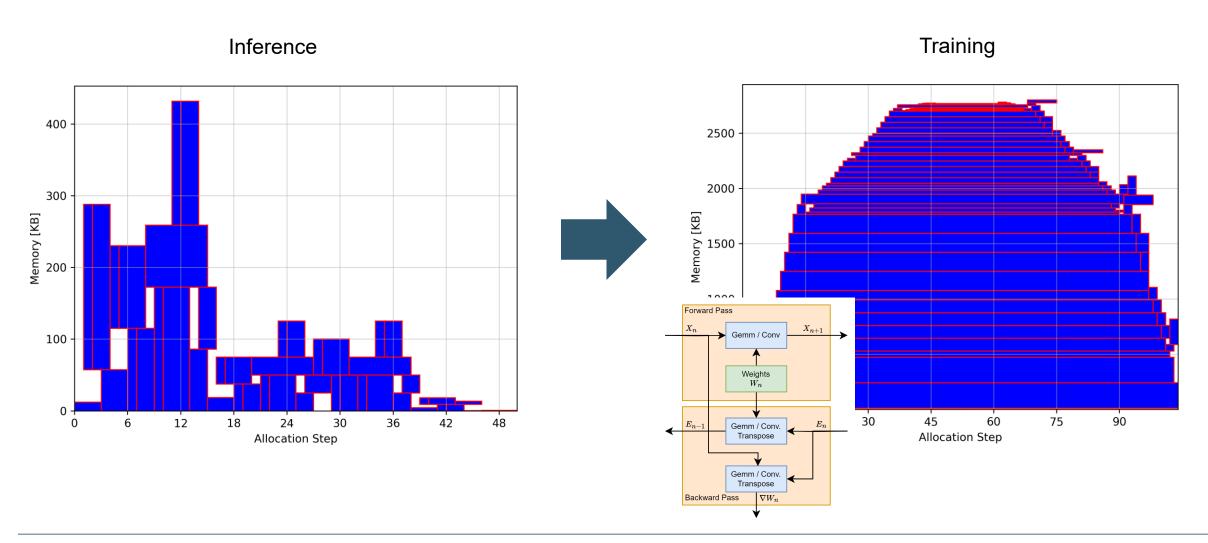


Deployment Pipeline [DWM+23, DHM+24a]



Fraunhofer esign

Memory Allocation [DHM+24a]



Training Quantized Neural Networks

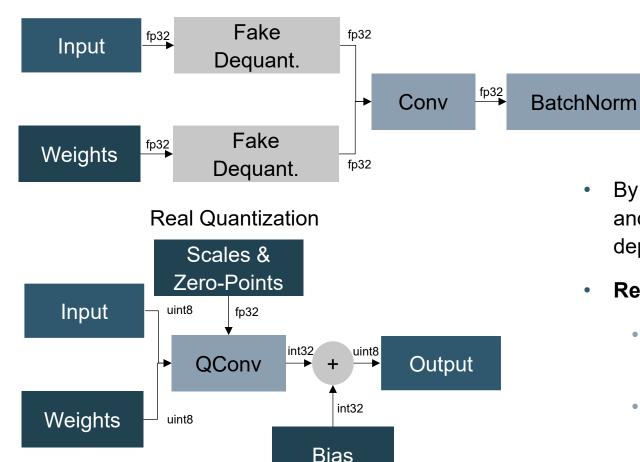
Fraunhofer esign

Fake Quant.

Output

Quantized Backpropagation [DHM+24a]

Quantization Aware Training



- By using Quantization Aware Training, all memory and algorithmic optimizations used to enable deployment on MCUs would be lost
- **Real Quantization** fixes this issue, however ...

ReLU

- ... using quantized tensors for BP and SGD increase chance of training failure
- ... the scaling rates used for quantization must be adapted during training without any floating-point reference weights

Training Quantized Neural Networks

Fraunhofer

Partial Gradient Updates [DHM+24a]

Reduce computational overhead by only performing partial updates

- Prune structures from error tensors of backpropagation with a low magnitude
 - Reduces number of arithmetic operations in the subsequent operator
- For each layer, use a dynamic update rate for each training sample

$$k = [\min\{\lambda_{min} + |\varepsilon| * (\lambda_{max} - \lambda_{min}), 1\} * N]$$

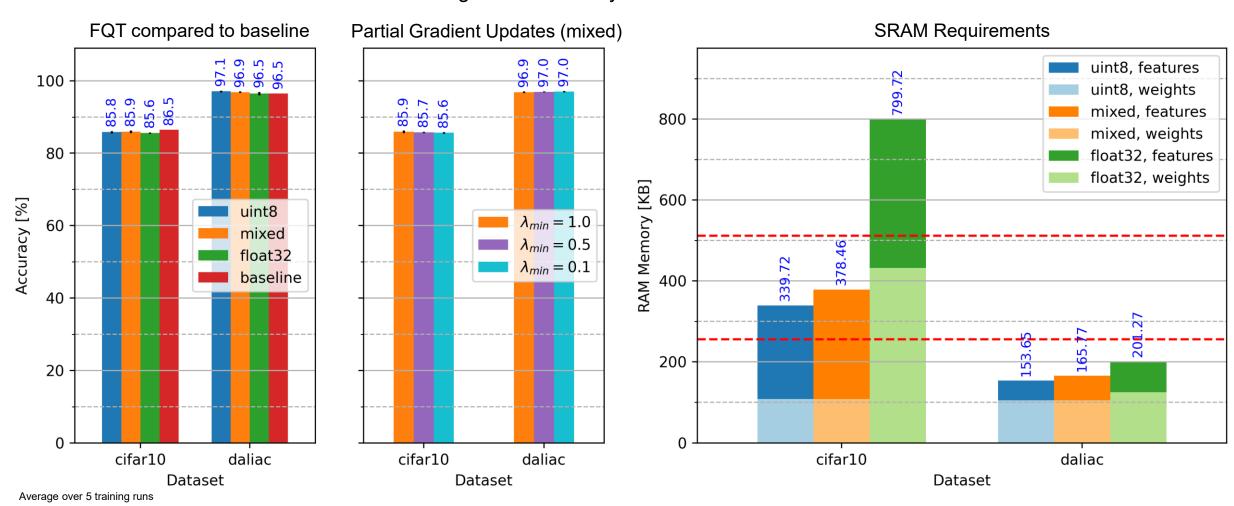
with $0 \le \lambda_{min} \le \lambda_{max} \le 1$ being hyperparameters controlling the aggressiveness of the algorithm in terminating error signals and ε being the maximum error observed so far

_		2	2	3			4	9
Ш	0		1	┸	0		₃	16
2		8	-	6		1	0	
11		2	,	9	4	4		5
		3		4			2	2
2		ა —		+		7	1	
3		14	9	9	4	2		

Evaluation

Fully Quantized Training – Accuracy and Memory [DHM+24a]

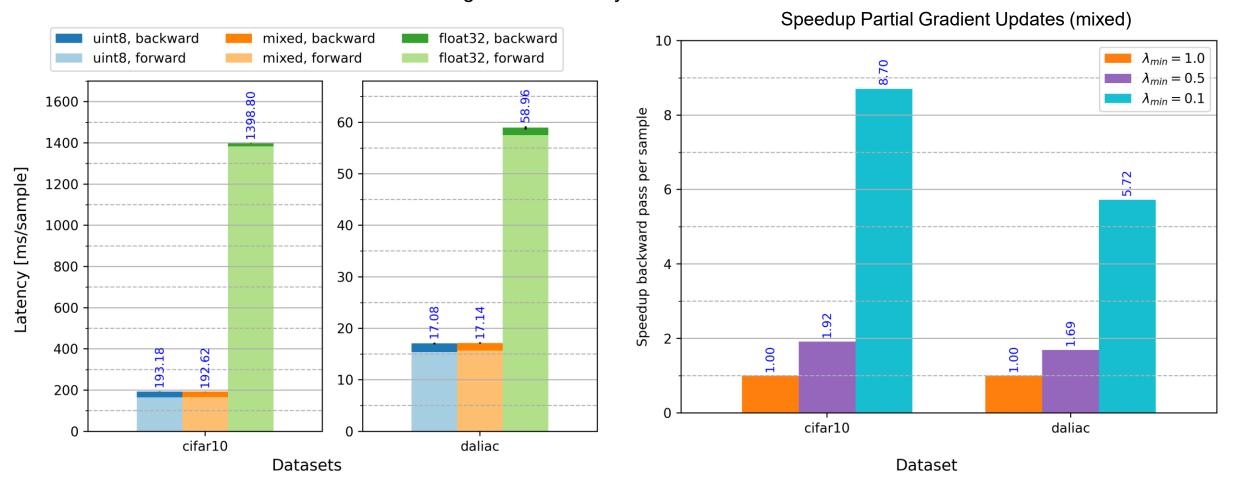
Fine-tuning of the last 5 layers of a MobileNetV2 CNN



Evaluation

Fully Quantized Training – Latency [DHM+24a]

Fine-tuning of the last 5 layers of a MobileNetV2 CNN



MCU: IMXRT1062 @ 600 MHz (Teensy), 2 x 512 KB RAM, 7.75 MB Flash

Training Paradigms

Active Learning

- The learning algorithm can interactively query an oracle (a human)
- Useful in situations where data is abundant, but labeling is expensive
- Querying a human in an embedded environment might not be feasible

Weakly Supervised Learning

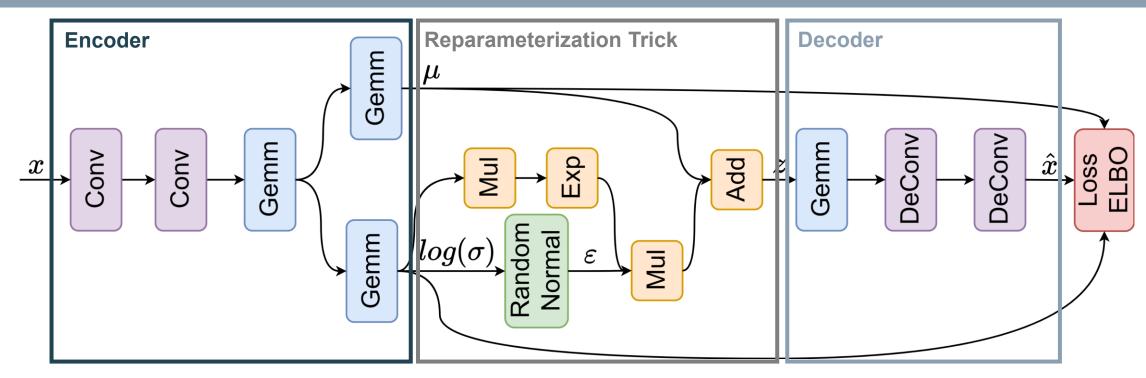
- Use a combination of labeled and unlabeled or imprecisely labeled data for training
- Automatically generate labels using functions or heuristics
- Usage of explicit or implicit prior knowledge to infer labels, usage of auxiliary information (captions, scribbles, ...)
- Generative Al

Unsupervised/Self-Supervised Learning

- Learn patterns exclusively from unlabeled data
- Clustering algorithms, k-means, dimensionality reduction
- DNN uses the data itself to generate supervisory signals (autoassociative, contrastive)

Fraunhofer (

Variational Autoencoders¹ (VAEs)



Gaussian distributions are not differentiable as discrete functions > use reparameterization trick for backpropagation

$$z_i = \mu_i + \sigma_i \epsilon_i$$
 with $\epsilon_i \sim \mathcal{N}(0,1)$

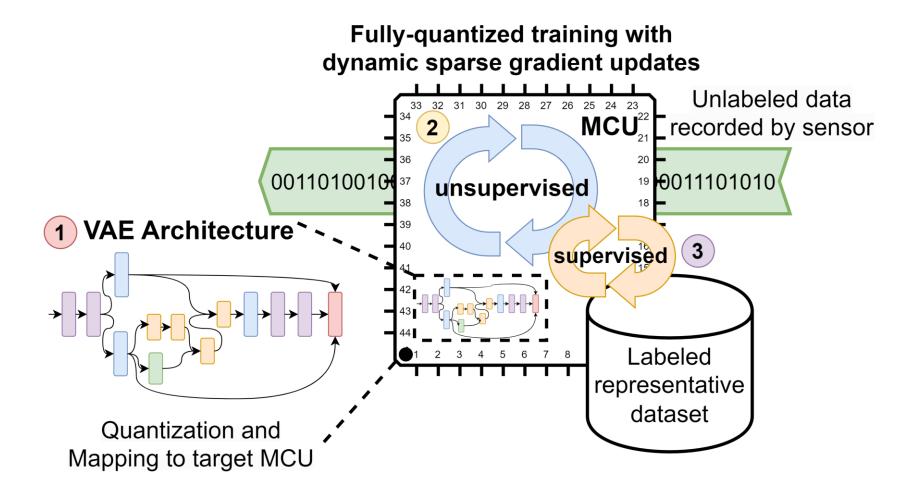
Evidence Lower Bound (ELBO) Loss

$$ELBO(q) = \mathbb{E}_q[\log p(x|z)] - KL(q(z)||p(z))$$

Kingma, Diederik P., and Max Welling. "Auto-encoding variational bayes." 20 Dec. 2013

Fraunhofer (

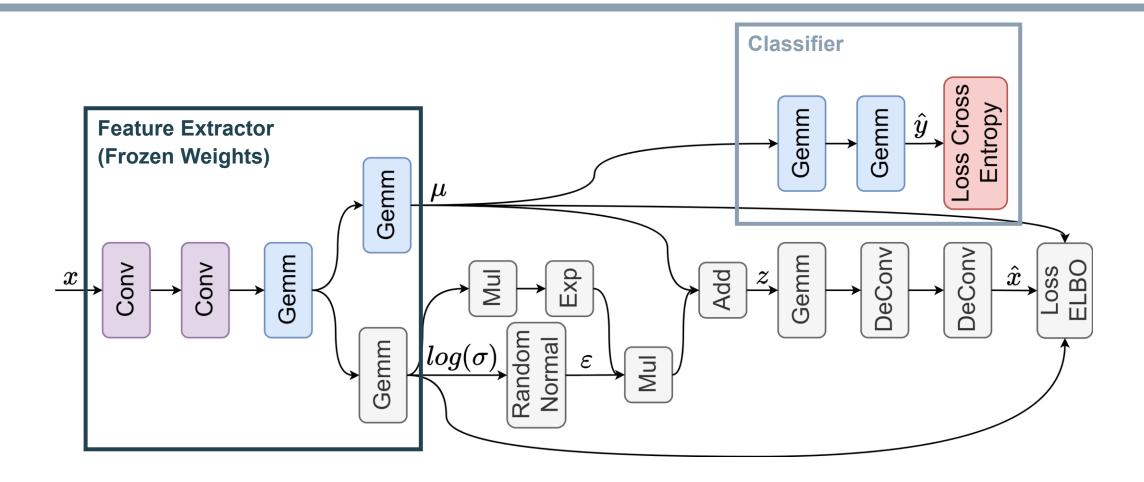
Framework [DSP+25]



Variational Autoencoders

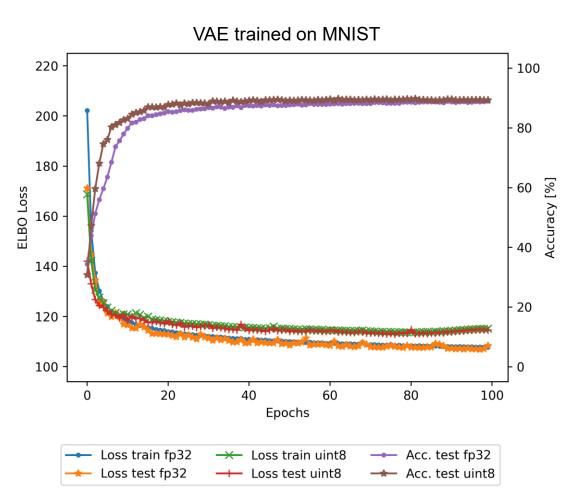
Fraunhofer

Supervised Training using the Encoder as a Feature Extractor [DSP+25]



Evaluation

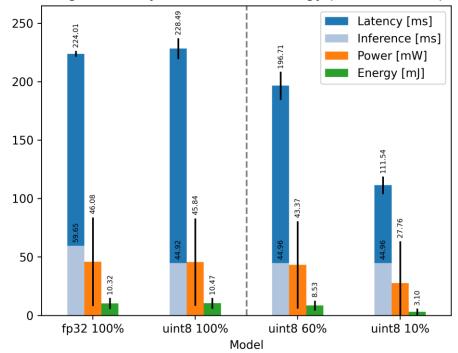
Unsupervised On-Device Training [DSP+25]



100 labeled samples per class used for training of classifier

Model	Activations	Weights
fp32	45.3 kB	484.1 kB
uint8	23.0 kB (↓49.2%)	221.0 kB (↓54.3%)

Average Latency, Power, and Energy per train sample



STM32 L4R5ZI Cortex-M4, 120MHz, Percentages denote amount of gradient updates

Conclusion

Conclusion

- On-device training of deep neural networks on MCUs comes with its own set of unique challenges. However, these challenges can be overcome using ...
 - Fully quantized training
 - Partial gradient updating
 - Focus on fine-tuning of last layers
- To enable on-device training, existing mapping tools and runtimes need to be adapted to support training
 - i.e., backpropagation and stochastic gradient descent
- Variation autoencoders can be used to enable unsupervised training on-device, i.e., without labeled data

References

[DWM+23] Mark Deutel, Philipp Woller, Christopher Mutschler, and Jürgen Teich. "Energy-efficient Deployment of Deep Learning Applications on Cortex-M based Microcontrollers using Deep Compression". In: Proceedings of the 26th Workshop on Methods and Description Languages for Modelling and Verification of Circuits and Systems (MBMV), (pp. 1–12), 2023.

[DHM+24a] Mark Deutel, Frank Hannig, Christopher Mutschler, and Jürgen Teich. "On-device Training of Fully Quantized Deep Neural Networks on Cortex-M Microcontrollers". IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 44(4), (pp. 1250–1261), 2024.

[DPS+25] Mark Deutel, Axel Plinge, Dominik Seuss, Christopher Mutschler, Frank Hannig, and Jürgen Teich. "Unsupervised Learning of Variational Autoencoders on Cortex-M Microcontrollers". To appear in: Proceedings of the IEEE 18th International Symposium on Embedded Multicore/Many-core Systems-on-Chip (MCSoC), 2025.

Thank you for your attention!

Contact: mark.deutel@fau.de

