

Friedrich-Alexander-Universität Technische Fakultät

On-Device Training of Fully Quantized Deep Neural Networks on Cortex-M Microcontrollers

Mark Deutel^{1,2}, Frank Hannig¹, Christopher Mutschler², Jürgen Teich¹ ¹Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) ²Fraunhofer Institute for Integrated Circuits IIS

Problem Statement

- On-device training of deep neural networks (DNNs) on microcontroller units (MCUs) is challenging due to the computational and memory overheads introduced by *Backpropagation* (BP) and *Stochastic Gradient Descent*
- Training with quantized data types results in *reduced training stability* and *diminished loss convergence*
- Contribution: An extension of our DNN inference framework for MCUs [1] to support memory and computional efficient on-device training of DNNs through fully-quantized training, partial gradient updating, and gradient standardization

Fully-Quantized Training

Gradient Standardization

The stability of fully quantized training can be significantly improved by standardizing the gradients ∇W while updating the weights W with a learning rate / and using the mean $\mu_{\nabla W}$ and standard deviation $\sigma_{\nabla W}$ of ∇W , similar to [2]

$$W_{i+1} = \frac{1}{s_{W_{i+1}}} \left[\left(W_i - Z_{W_i} \right) s_{W_i} - \ell \frac{\nabla W_i - \mu_{\nabla W}}{\sigma_{\nabla W}} \right] + Z_{W_{i+1}}$$

Evaluation

 On-device transfer learning compared to floating-point and mixed training using our MBedNet DNN architecture

• Performance on the test datasets after 20 training epochs for three gradient update rates ($\lambda_{min} \in 0.1, 0.5, 1.0$)

- The backward pass that implements BP is derived from the forward pass during offline code generation
- Both forward and backward pass are fully quantized. For example, each element $e_{n-1} \in E_{n-1}$ can be computed from $e_n \in E_n$ and $w_n \in W_n$ as

$$\mathbf{e}_{n-1} = \left\lfloor \frac{\mathbf{s}_{w_n} \mathbf{s}_{\mathbf{e}_n}}{\mathbf{s}_{\mathbf{e}_{n-1}}} \sum (\mathbf{w}_n - \mathbf{z}_{w_n}) (\mathbf{e}_n - \mathbf{z}_{\mathbf{e}_n}) \right\rfloor + \mathbf{z}_{\mathbf{e}_{n-1}}$$

• Weight tensors W update their quantization parameters based on the range $[f_{min}, f_{max}]$ in floating-point space

$$s_{w_{i+1}} = \frac{f_{max} - f_{min}}{255} \qquad z_{w_{i+1}} = \left\lfloor -\frac{f_{min}}{s_{w_{i+1}}} \right\rfloor$$

- Error tensors E use a quantization range between [-1, 1]
- The quantization ranges for the activation tensors X are pre-determined from the training data set.

 Complete on-device training of a smaller CNN (4 trainable layers) for different datasets of the MNIST family

 Comparison between our optimizer and SGD+M+QAS [3] for updating the last two blocks of MCUNet-5FPS.

uint8	ours	54.5	89.5	65.2	58.5	85.8	66.6	79.8	89.3	73.7
int8	SGD+M+QAS [3]	55.2	86.9	64.6	57.8	89.1	64.4	80.9	89.3	73.5
int8	SGD-M [3]	31.2	75.4	64.5	55.1	84.5	52.5	79.5	88.7	64.9
fp32	SGD-M [3]	56.7	86.0	63.4	56.2	88.8	67.1	79.5	88.7	73.3
	optimizer	Cars	CF10	CF100	CUB	Flowers	Food	Pets	VWW	Acc.
Precision	Ontimizer	Accuracy (%) (MCUNet: 23M MACs, 0.48M Param)								Avg.

 Our optimizer provides a tradeoff between memory, latency, and accuracy that enables on-device, MCU-based re-training of DNNs equivalent to regular DNN training
The retaining performance of our approach is comparable to other implementations such as SGD+M+QAS, while our DNN MBedNet provides a better memory and latency tradeoff than MCUNet-5FPs

Dynamic Sparse Gradients

- The computational complexity of BP can be reduced by computing gradients only for structures of neurons that were highly activated during the forward pass
- The gradient update rate k is calculated from two hyperparameters 0 <= λ_{min} <= λ_{max} <= 1, and |ε|, which is the difference between the loss of the current sample and the maximum loss observed over the entire training

$\mathbf{k} = \left\lfloor \min\{\lambda_{\min} + |\varepsilon|(\lambda_{\max} - \lambda_{\min}), \mathbf{1}\}\mathbf{N} \right\rfloor$

 Based on the gradient update rate and for each layer, only the top-k structures are trained

References

- M. Deutel et al. "Energy-efficient Deployment of Deep Learning Applications on Cortex-M based Microcontrollers using Deep Compression". In: MBMV 2023; 26th Workshop. VDE. 2023, pp. 1–12.
- [2] G. Hinton, N. Srivastava, and K. Swersky. Neural networks for machine learning lecture 6a overview of mini-batch gradient descent. (Date last accessed 04-June-2024). URL: http://www.cs.toronto.edu/~hinton/coursera/ lecture6/lec6.pdf.

[3] J. Lin et al. "On-device training under 256kb memory". In: *Advances in Neural Information Processing Systems* 35 (2022), pp. 22941–22954.