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Problem Statement
• On-device training of deep neural networks (DNNs) on
microcontroller units (MCUs) is challenging due to the
computational and memory overheads introduced by
Backpropagation (BP) and Stochastic Gradient Descent

• Training with quantized data types results in reduced
training stability and diminished loss convergence

• Contribution: An extension of our DNN inference
framework for MCUs [1] to support memory and
computional efficient on-device training of DNNs through
fully-quantized training, partial gradient updating, and
gradient standardization

Fully-Quantized Training
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• The backward pass that implements BP is derived from
the forward pass during offline code generation

• Both forward and backward pass are fully quantized. For
example, each element en−1 ∈ En−1 can be computed
from en ∈ En and wn ∈ Wn as

en−1 =

⌊
swnsen
sen−1

∑
(wn − zwn)(en − zen)

⌋
+ zen−1

• Weight tensorsW update their quantization parameters
based on the range [fmin, fmax] in floating-point space

swi+1 =
fmax − fmin

255
zwi+1 =

⌊
− fmin

swi+1

⌋
• Error tensors E use a quantization range between [−1,1]
• The quantization ranges for the activation tensors X are
pre-determined from the training data set.

Dynamic Sparse Gradients
• The computational complexity of BP can be reduced by
computing gradients only for structures of neurons that
were highly activated during the forward pass

• The gradient update rate k is calculated from two
hyperparameters 0 <= λmin <= λmax <= 1, and |ε|, which
is the difference between the loss of the current sample
and the maximum loss observed over the entire training

k = ⌊min{λmin + |ε|(λmax − λmin),1}N⌋
• Based on the gradient update rate and for each layer, only
the top-k structures are trained

Gradient Standardization
The stability of fully quantized training can be significantly
improved by standardizing the gradients ∇W while updating
the weightsW with a learning rate l and using the mean µ∇W
and standard deviation σ∇W of ∇W, similar to [2]

wi+1 =
1

swi+1

[
(wi − zwi) swi − ℓ

∇wi − µ∇W

σ∇W

]
+ zwi+1

Evaluation
• On-device transfer learning compared to floating-point
and mixed training using our MBedNet DNN architecture
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• Performance on the test datasets after 20 training epochs
for three gradient update rates (λmin ∈ 0.1,0.5,1.0)
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• Complete on-device training of a smaller CNN (4 trainable
layers) for different datasets of the MNIST family
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• Comparison between our optimizer and SGD+M+QAS [3]
for updating the last two blocks of MCUNet-5FPS.

Precision Optimizer Accuracy (%) (MCUNet: 23M MACs, 0.48M Param) Avg.
Acc.Cars CF10 CF100 CUB Flowers Food Pets VWW

fp32 SGD-M [3] 56.7 86.0 63.4 56.2 88.8 67.1 79.5 88.7 73.3
int8 SGD-M [3] 31.2 75.4 64.5 55.1 84.5 52.5 79.5 88.7 64.9
int8 SGD+M+QAS [3] 55.2 86.9 64.6 57.8 89.1 64.4 80.9 89.3 73.5
uint8 ours 54.5 89.5 65.2 58.5 85.8 66.6 79.8 89.3 73.7
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Model

• Our optimizer provides a tradeoff between memory,
latency, and accuracy that enables on-device, MCU-based
re-training of DNNs equivalent to regular DNN training

• The retaining performance of our approach is comparable
to other implementations such as SGD+M+QAS, while our
DNN MBedNet provides a better memory and latency
tradeoff than MCUNet-5FPs
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