
On-Device Training of Fully Quantized Deep
Neural Networks on Cortex-M Microcontrollers

Mark Deutel1,2, Frank Hannig1, Christopher Mutschler2, Jürgen Teich1
1Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) 2Fraunhofer Institute for Integrated Circuits IIS

Problem Statement
• On-device training of deep neural networks (DNNs) on
microcontroller units (MCUs) is challenging due to the
computational and memory overheads introduced by
Backpropagation (BP) and Stochastic Gradient Descent

• Training with quantized data types results in reduced
training stability and diminished loss convergence

• Contribution: An extension of our DNN inference
framework for MCUs [1] to support memory and
computional efficient on-device training of DNNs through
fully-quantized training, partial gradient updating, and
gradient standardization

Fully-Quantized Training

Gemm /
Conv

uint8
Input

uint8
Weights

+
int32

int32

Bias

Output
uint8

Gemm / Conv

Gemm / Conv.
Transpose

Gemm / Conv.
Transpose

Weights

Forward Pass

Backward Pass

Scales &
Zeropoints

fp32

• The backward pass that implements BP is derived from
the forward pass during offline code generation

• Both forward and backward pass are fully quantized. For
example, each element en−1 ∈ En−1 can be computed
from en ∈ En and wn ∈ Wn as

en−1 =

⌊
swnsen
sen−1

∑
(wn − zwn)(en − zen)

⌋
+ zen−1

• Weight tensorsW update their quantization parameters
based on the range [fmin, fmax] in floating-point space

swi+1 =
fmax − fmin

255
zwi+1 =

⌊
− fmin

swi+1

⌋
• Error tensors E use a quantization range between [−1,1]
• The quantization ranges for the activation tensors X are
pre-determined from the training data set.

Dynamic Sparse Gradients
• The computational complexity of BP can be reduced by
computing gradients only for structures of neurons that
were highly activated during the forward pass

• The gradient update rate k is calculated from two
hyperparameters 0 <= λmin <= λmax <= 1, and |ε|, which
is the difference between the loss of the current sample
and the maximum loss observed over the entire training

k = ⌊min{λmin + |ε|(λmax − λmin),1}N⌋
• Based on the gradient update rate and for each layer, only
the top-k structures are trained

Gradient Standardization
The stability of fully quantized training can be significantly
improved by standardizing the gradients ∇W while updating
the weightsW with a learning rate l and using the mean µ∇W
and standard deviation σ∇W of ∇W, similar to [2]

wi+1 =
1

swi+1

[
(wi − zwi) swi − ℓ

∇wi − µ∇W

σ∇W

]
+ zwi+1

Evaluation
• On-device transfer learning compared to floating-point
and mixed training using our MBedNet DNN architecture

flowers cifar10 cifar100 animals speech daliac cwru
Dataset

0

20

40

60

80

100

Ac
cu

ra
cy

 [%
]

74
.6

85
.8

40
.4

84
.2

81
.4

97
.1 99

.5

83
.8 85
.9

54
.4

89
.0

84
.4

96
.9 99

.8

85
.2

85
.6

54
.5

89
.2

84
.3

96
.5 99

.8

89
.7

86
.5

59
.8

86
.4 90

.1 96
.5 99

.8

uint8
mixed
float32
baseline

daliac cwru
0

10

20

30

40

50

60
17

.0
8

3.
57

17
.1

4

3.
50

58
.9

6

8.
66

flowers
animals

speech
0

100

200

300

400

500

19
8.

31

13
4.

81

42
9.

66

19
8.

04

13
6.

95

44
5.

61

cifar10
cifar100

0

200

400

600

800

1000

1200

1400

1600

19
3.

18

19
3.

61

19
2.

62

19
2.

91

13
98

.8
0

13
99

.0
8

La
te

nc
y

[m
s/

sa
m

pl
e]

Datasets

uint8, backward
uint8, forward

mixed, backward
mixed, forward

float32, backward
float32, forward

flowers cifar10 cifar100 animals speech daliac cwru
Dataset

0

250

500

750

1000

1250

1500

1750

2000

RA
M

 M
em

or
y

[K
B]

71
2.

52

33
9.

72

36
9.

24 46
4.

20 56
0.

19

15
3.

65

17
.2

1

76
8.

91

37
8.

46

42
5.

26

48
1.

28 60
3.

90

16
5.

77

19
.0

7

18
74

.2
3

79
9.

72

84
6.

52 10
22

.7
5

17
24

.7
1

20
1.

27

42
.2

7

uint8, features
uint8, weights
mixed, features
mixed, weights
float32, features
float32, weights

flowers cifar10 cifar100 animals speech daliac cwru
Dataset

0

200

400

600

800

1000

1200

1400

1600

Fl
as

h
M

em
or

y
[K

B]

36
1.

06

36
1.

06

36
1.

06

20
4.

26 35
0.

58

11
2.

17

51
.8

8

36
1.

02

36
1.

02

36
1.

02

20
4.

23 35
0.

55

11
2.

14

51
.8

4

13
96

.4
8

13
96

.4
8

13
96

.4
8

77
9.

37

13
54

.5
0

41
8.

22

18
2.

86

uint8
mixed
float32

• Performance on the test datasets after 20 training epochs
for three gradient update rates (λmin ∈ 0.1,0.5,1.0)

flowers cifar10 cifar100 animals speech daliac cwru
Dataset

0

20

40

60

80

100

Ac
cu

ra
cy

 [%
]

83
.8 85
.9

54
.4

89
.0

84
.4

96
.9 99

.8

83
.7 85
.7

53
.9

89
.0

84
.6

97
.0 99

.8

82
.5 85

.6

53
.5

89
.0

83
.9

97
.0 99

.8

gradient update
100%
50%
10%

flowers cifar10 cifar100 animals speech daliac cwru
0

2

4

6

8

10

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
67 1.

92

1.
89

1.
65 1.

94

1.
69

1.
43

6.
01

8.
70

8.
17

5.
23

8.
66

5.
72

4.
01

gradient update
100%
50%
10%

Sp
ee

du
p

ba
ck

wa
rd

 p
as

s p
er

 sa
m

pl
e

Dataset
0 2 4 6 8 10 12 14 16 18

Epoch

40

50

60

70

80

[%
]

Flowers

gradient update
100%
50%
10%

accuracy
loss

1.0

1.5

2.0

2.5

3.0

Lo
ss

• Complete on-device training of a smaller CNN (4 trainable
layers) for different datasets of the MNIST family

emnist_letters fmnist kmnist emnist_digits
Dataset

0

20

40

60

80

100

Ac
cu

ra
cy

 [%
] 61

.8

76
.1

63
.4

91
.5

69
.0

79
.9

69
.9

93
.1

78
.0 84

.0

83
.4

97
.3

uint8
mixed
float32

IMXRT1062 (M7)
0

5

10

15

20

25

30

35

40

La
te

nc
y

[m
s/

sa
m

pl
e]

35
.4

0
35

.0
4

36
.1

1

nrf52840 (M4)

RP2040 (M0+)
0

200

400

600

800

1000

89
7.

56

81
7.

14

IMXRT1062 (M7)
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

En
er

gy
 [m

J/s
am

pl
e]

0.
17

0.
18

0.
53

nrf52840 (M4)

RP2040 (M0+)
0

5

10

15

20

25

23
.9

5

0.
67

EMNIST Digits

uint8 backward
uint8 forward

mixed backward
mixed forward

float32 backward
float32 forward

• Comparison between our optimizer and SGD+M+QAS [3]
for updating the last two blocks of MCUNet-5FPS.

Precision Optimizer Accuracy (%) (MCUNet: 23M MACs, 0.48M Param) Avg.
Acc.Cars CF10 CF100 CUB Flowers Food Pets VWW

fp32 SGD-M [3] 56.7 86.0 63.4 56.2 88.8 67.1 79.5 88.7 73.3
int8 SGD-M [3] 31.2 75.4 64.5 55.1 84.5 52.5 79.5 88.7 64.9
int8 SGD+M+QAS [3] 55.2 86.9 64.6 57.8 89.1 64.4 80.9 89.3 73.5
uint8 ours 54.5 89.5 65.2 58.5 85.8 66.6 79.8 89.3 73.7

MCUNet MBedNet
0

200

400

600

800

1000

M
em

or
y

[K
B]

1133.60

739.48

features
dynamic weights
static weights

MCUNet MBedNet
0

50

100

150

200

250

300

350

La
te

nc
y

[m
s/

sa
m

pl
e]

377.63

192.62

backward
forward

Model

• Our optimizer provides a tradeoff between memory,
latency, and accuracy that enables on-device, MCU-based
re-training of DNNs equivalent to regular DNN training

• The retaining performance of our approach is comparable
to other implementations such as SGD+M+QAS, while our
DNN MBedNet provides a better memory and latency
tradeoff than MCUNet-5FPs

References
[1] M. Deutel et al. “Energy-efficient Deployment of Deep Learning Applications

on Cortex-M based Microcontrollers using Deep Compression”. In: MBMV
2023; 26th Workshop. VDE. 2023, pp. 1–12.

[2] G. Hinton, N. Srivastava, and K. Swersky. Neural networks for machine learn-
ing lecture 6a overview of mini-batch gradient descent. (Date last accessed
04-June-2024). URL: http://www.cs.toronto.edu/~hinton/coursera/
lecture6/lec6.pdf.

[3] J. Lin et al. “On-device training under 256kbmemory”. In: Advances in Neural
Information Processing Systems 35 (2022), pp. 22941–22954.

http://www.cs.toronto.edu/~hinton/coursera/lecture6/lec6.pdf
http://www.cs.toronto.edu/~hinton/coursera/lecture6/lec6.pdf

