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Problem Statement Gradient Standardization
* On-device training of deep neural networks (DNNs) on The stability of fully quantized training can be significantly
microcontroller units (MCUs) is challenging due to the improved by standardizing the gradients V W while updating
computational and memory overheads introduced by the weights W with a learning rate /and using the mean uvyw
Backpropagation (BP) and Stochastic Gradient Descent and standard deviation oy of VW, similar to [2]
» Training with quantized data types results in reduced 1 | VWi— pvw|
. . oy c e . Wit1 = —— (W/_ZW-)SW- 4 |ZW-1
training stability and diminished loss convergence Swi . | o ovw i

* Contribution: An extension of our DNN inference
framework for MCUs [1] to support memory and
computional efficient on-device training of DNNs through
fully-quantized training, partial gradient updating, and * On-device transfer learning compared to floating-point
gradient standardization and mixed training using our MBedNet DNN architecture
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* The backward pass that implements BP is derived from * Complete on-device training of a smaller CNN (4 trainable
the forward pass during offline code generation layers) for different datasets of the MNIST family
* Both forward and backward pass are fully quantized. For st Sxi Sas
example, each element e,_1 € E,,_1 can be computed ! o [l §
n | (1
from e, € E,and w, € W, as | o | IS
1 L )
SWn Sen ﬁl” s «lw
€n-1 = S Z(Wn — Zy,)(en— Ze,) | + Ze, . I
| V€n-1 _ * Comparison between our optimizer and SGD+M+QAS [3]
* Weight tensors W update their quantization parameters for updating the last two blocks of MCUNet-5FPS.
based ol the range [fmin7 fmax] n ﬂoatlng-pOInt Space Precision Optimi Accuracy (%) (MCUNet: 23M MACs, 0.48M Param) Avg. .E thth =-
recision SpHmizer Cars CF10 CF100 CUB Flowers Food Pets VWW AcC. . - -
fmax = fmin fmin fp32  SGD-M[3] 56.7 86.0 63.4 56.2 88.8 67.1 79.5 88.7 73.3 .| Y - LI
S, = Zy. , = int8  SGD-M [3] 31.2 75.4 645 55.1 845 525 79.5 88.7 64.9 ‘| N -
Wir1 255 A S..,. int8  SGD+M+QAS[3] 55.2 86.9 64.6 57.8 89.1 64.4 80.9 89.3 73.5 = | -
—~ Wit1_ uint8  ours 54.5 89.5 65.2 58.5 85.8 66.6 79.8 89.3 73.7 ._l g =
* Error tensors E use a quantization range between|-21,1, T oTmw
» The guantization ranges for the activation tensors X are * Qur optimizer provides a tradeoff between memory,
pre-determined from the training data set. latency, and accuracy that enables on-device, MCU-based
re-training of DNNs equivalent to regular DNN training
® ® o .
Dynam|c Spa rse Gradients * The retaining performance of our approach is comparable
to other implementations such as SGD+M+QAS, while our
* The computational complexity of BP can be reduced by DNN MBedNet provides a better memory and latency
computing gradients only for structures of neurons that tradeoff than MCUNet-5FPs

were highly activated during the forward pass
* The gradient update rate kis calculated from two References
hyperparameters 0 <= A\pin <= Amax <= 1, and |¢|, which
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and the maximum loss observed over the entire training , orkshop PP | [w] 2, = [m]
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* Based on the gradient update rate and for each layer, only | o |
. [3] J.Lin et al. “On-device training under 256kb memory”. In: Advances in Neural
the tOp'k structures are trained Information Processing Systems 35 (2022), pp. 22941-22954.
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