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How can labels required for training on the edge be acquired or substituted?
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Unsupervised Training of DNNs

« Learn patterns exclusively from unlabeled data

« Clustering algorithms, k-means, dimensionality reduction

When DNNSs are trained unsupervised, they use the data itself to generate supervisory signals.
- Often called self-supervised learning
- Common methods: autoassociative learning, contrastive learning

- Contribution of this work: On-device training of variational autoencoders on Cortex-M MCUs
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Training of Variational Autoencoders on Microcontrollers
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Variational Autoencoders' (VAES)
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1.  Kingma, Diederik P., and Max Welling. "Auto-encoding variational bayes." 20 Dec. 2013
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Supervised Training using the Encoder of a VAE as a Feature Extractor
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* Freeze the encoder network of the VAE that was trained unsupervised and use .. @
it as a feature extractor ® Unfzggivnized
®
- Attach a classification head to the encoder's output and train it using a small ® O

labeled dataset.
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Training of Variational Autoencoders on MCUs
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Fully-quantized training with
dynamic sparse gradient updates
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Quantize and map the untrained VAE
architecture to the target
microcontroller platform

Use unlabeled data recorded by a
sensor to train the quantized VAE
unsupervised on-device.

After the ELBO loss has converged,
freeze the encoder network, and train
the attached classification head
supervised using a small, externally
stored, labeled dataset
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Quantized Backpropagation®

Quantization Aware Training

nout A Fake 132
P Dequant.

o = ®%  Fake Quant. > Output
p32 Fake B
Dequant. fp32
« By using Quantization Aware Training, all memory
Real Quantization and algorithmic optimizations used to enable
Scales & deployment on MCUs would be lost
ZBoRITE - Real Quantization fixes this issue, however ...
. . * ... using quantized tensors for BP and SGD
increase chance of training failure
« ... the scaling rates used for quantization must be

Weights

M. Deutel, F. Hannig, C. Mutschler, and J. Teich. “On-device Training of Fully Quantized Deep Neural Networks on Cortex-M Microcontrollers”. IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, 44(4), (pp. 1250-1261), 2024.

adapted during training without any floating-point
reference weights

1.
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Evaluation
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On-Device Training Results — Floating Point (fp32)
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« ELBO loss when training the VAE unsupervised on the MNIST and FashionMNIST datasets (no labels, 60000 samples)

- After each epoch, three different classification heads were trained using a labeled subset of the training datasets
(with 10, 100, and 200 samples per class), and then evaluated using the labeled test split of the datasets
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On-Device Training Results — Quantized (u8)
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- ELBO loss and accuracy when repeating the same experiment as on the previous slide, but with quantized VAEs

 The dashed lines show the best loss and accuracy achieved by the floating-point VAEs from the previous slide
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Memory, Latency, and Energy

Average Latency, Power, and Energy per training sample

B Latency [ms] . Power [mW]
Inference [ms] WM Energy [m)]

Memory Requirements (SRAM) e : §
Model  Activations Weights 200 -
fp32 45.3 kB 484.1 kB 150 .
u8d 23.0kB (]49.2%) 221.0kB (/54.3%)
100 A

46.08

fp32 uint8
Model

STM32 L4R5Z| Cortex-M4, 120MHz
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Qualitative Results
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Random samples in no particular order, generated using the decoders of VAEs trained on MNIST and Fashion MNIST.

For both datasets, the latent spaces of the on-device trained quantized VAEs allow the generation of samples with the
same visual quality as the latent spaces of regularly trained floating-point VAEs.
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Conclusion
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- Variation Autoencoders (VAEs) can be used for unsupervised training on microcontrollers

« The encoder network of a VAE can be frozen and used as a feature extractor after unsupervised training

« Then, a classification head can be trained using a small, representative dataset (~100 labeled samples per class)
* Fully-quantized training allows for memory efficient training of VAEs on microcontrollers

« The quantized VAEs achieved the same accuracy as the unquantized VAEs for classifying both MNIST and Fashion-
MNIST
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Thank you for
your attention!

Contact: mark.deutel@fau.de
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