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The Cloud-Edge-Continuum

Motivation
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How can labels required for training on the edge be acquired or substituted?
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Motivation
Unsupervised Training of DNNs
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• Learn patterns exclusively from unlabeled data

• Clustering algorithms, k-means, dimensionality reduction

• When DNNs are trained unsupervised, they use the data itself to generate supervisory signals. 

• Often called self-supervised learning

• Common methods: autoassociative learning, contrastive learning

• Contribution of this work: On-device training of variational autoencoders on Cortex-M MCUs

Unsupervised

Learning
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Training of Variational Autoencoders on Microcontrollers
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Variational Autoencoders1 (VAEs)

Autoassociative Unsupervised Learning

Encoder DecoderReparameterization Trick

Gaussian distributions are not differentiable as discrete functions 

→ use reparameterization trick for backpropagation

𝑧𝑖 = 𝜇𝑖 + 𝜎𝑖𝜖𝑖  with 𝜖𝑖 ∼ 𝒩(0,1)

1. Kingma, Diederik P., and Max Welling. "Auto-encoding variational bayes." 20 Dec. 2013

Unsupervised

Learning
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Supervised Training using the Encoder of a VAE as a Feature Extractor

Autoassociative Unsupervised Learning

Classifier

Feature Extractor 

(Frozen Weights)

• Freeze the encoder network of the VAE that was trained unsupervised and use 

it as a feature extractor

• Attach a classification head to the encoder's output and train it using a small

labeled dataset.

Unsupervised

Learning
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Framework

Training of Variational Autoencoders on MCUs

1. Quantize and map the untrained VAE 

architecture to the target 

microcontroller platform

2. Use unlabeled data recorded by a 

sensor to train the quantized VAE 

unsupervised on-device.

3. After the ELBO loss has converged, 

freeze the encoder network, and train 

the attached classification head 

supervised using a small, externally 

stored, labeled dataset
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Training of Variational Autoencoders on MCUs
Quantized Backpropagation1
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• By using Quantization Aware Training, all memory 

and algorithmic optimizations used to enable 

deployment on MCUs would be lost

• Real Quantization fixes this issue, however …

• … using quantized tensors for BP and SGD 

increase chance of training failure

• … the scaling rates used for quantization must be 

adapted during training without any floating-point 

reference weights
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1. M. Deutel, F. Hannig, C. Mutschler, and J. Teich. “On-device Training of Fully Quantized Deep Neural Networks on Cortex-M Microcontrollers”. IEEE Transactions on Computer-Aided Design of Integrated Circuits and 

Systems, 44(4), (pp. 1250–1261), 2024.
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On-Device Training Results – Floating Point (fp32)

Evaluation

MNIST FashionMNIST

• ELBO loss when training the VAE unsupervised on the MNIST and FashionMNIST datasets (no labels, 60000 samples)

• After each epoch, three different classification heads were trained using a labeled subset of the training datasets     

(with 10, 100, and 200 samples per class), and then evaluated using the labeled test split of the datasets
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On-Device Training Results – Quantized (u8)

Evaluation

MNIST FashionMNIST

• ELBO loss and accuracy when repeating the same experiment as on the previous slide, but with quantized VAEs

• The dashed lines show the best loss and accuracy achieved by the floating-point VAEs from the previous slide
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Memory, Latency, and Energy

Evaluation

Model Activations Weights

fp32 45.3 kB 484.1 kB

u8 23.0 kB (↓49.2%) 221.0 kB (↓54.3%)

Average Latency, Power, and Energy per training sample

STM32 L4R5ZI Cortex-M4, 120MHz

Memory Requirements (SRAM)
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Qualitative Results

Evaluation

• Random samples in no particular order, generated using the decoders of VAEs trained on MNIST and Fashion MNIST.

• For both datasets, the latent spaces of the on-device trained quantized VAEs allow the generation of samples with the 

same visual quality as the latent spaces of regularly trained floating-point VAEs.

Unsupervised

Learning
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Conclusion

• Variation Autoencoders (VAEs) can be used for unsupervised training on microcontrollers

• The encoder network of a VAE can be frozen and used as a feature extractor after unsupervised training

• Then, a classification head can be trained using a small, representative dataset (~100 labeled samples per class)

• Fully-quantized training allows for memory efficient training of VAEs on microcontrollers 

• The quantized VAEs achieved the same accuracy as the unquantized VAEs for classifying both MNIST and Fashion-

MNIST
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Thank you for 

your attention!

Contact: mark.deutel@fau.de
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