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Abstract—Training and fine-tuning deep neural networks
(DNNs) to adapt to new and unseen data at the edge has recently
attracted considerable research interest. However, most work to
date has focused on supervised learning of pre-trained, quantized
DNNs. Although these proposed techniques are advantageous
in enabling DNN training even on resource-constrained devices
such as microcontroller units (MCUs), they do not address the
issue that large amounts of labeled data are required to perform
supervised training. Moreover, while data are readily available at
the edge, ground-truth labels are typically not. In this work, we
explore variational autoencoders as a way to train unsupervised,
i.e., without labels, feature extractors for image classification on
a Cortex-M MCU. Using these feature extractors, we then train
classification heads using small labeled representative sets of data
to solve classification tasks. Our approach significantly reduces the
amount of labeled data required, while enabling full DNN training
from scratch on resource-constrained devices.

Index Terms—Unsupervised Learning, Microcontrollers, Varia-
tional Autoencoders, Quantization-Aware Training

I. INTRODUCTION

Edge artificial intelligence (AlI) is the use of Al at the end of
the cloud edge continuum [1]-[3], i.e., directly at the sensors
and actuators. Here, a typical target are embedded systems with
limited computing resources [4]. Thus, executing deep neural
networks (DNNG5) at the edge with energy-, time-, and resource-
efficient inference on, e.g., microcontroller units (MCUs) has be-
come a prevalent trend in research. Recent research has focused
on finding as efficient as possible deployments of pre-trained
DNNs on MCUs. However, since the environment monitored by
an MCU using these deployed DNNs may be constantly chang-
ing, the DNNs must eventually be able to adapt to maintain
a high quality of service even long after their initial deploy-
ment. While it is possible to retrain DNNs in the cloud and
then redeploy them, this is often challenging in practice because
communication between the cloud and MCUs is often unreliable
and has limited throughput. This poses a problem because a
significant amount of data must be transferred to the cloud to
retrain the DNN, and afterward, the new set of weights must be
sent back to the MCU.

As a result, recent research has explored the feasibility of
training and fine-tuning quantized DNNs directly on MCUs [5],
[6]. This approach overcomes the communication bottleneck
because the data recorded on the MCU can be used directly to
fine-tune the weights of the deployed DNN in place. However,
scientific work in this context has focused only on supervised
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Figure 1. Proposed framework for unsupervised fully quantized training of
VAEs on MCUs.

training of DNNs. The question of how to match the labels
required for supervised training with the newly captured data on
the MCU remains unanswered.

In this work, we move toward label-free, i.e., unsupervised,
training of DNNs on MCUs to eliminate the need for labeled
data as much as possible. To this end, we explore VAEs [7]
as a means to train feature extractors for image classification
tasks with only data and no labels. Thus, only a small subset
of representative labeled data is needed to train a classifier in a
supervised manner to perform the final classification. To the best
of our knowledge, we are the first to consider such an approach
for on-device training on MCUs. Our proposed framework is
sketched in Fig. 1.

The contributions of our work are threefold. First, we present
a methodology for deploying and training fully quantized VAEs
with less than 256 kB of RAM on an MCU from scratch, that is,
without any pre-training. Second, we provide a detailed analy-
sis and discussion of the training performance of the quantized
VAEs compared to their floating-point counterparts for two im-
age classification tasks, MNIST and Fashion-MNIST. Third, we
analyze the latency and energy required for VAE training on a
Nucleo LARSZI Cortex-M4 MCU.

II. RELATED WORK

Training DNNs on MCUs has been discussed in research
mainly for supervised training to overcome the memory and
computational constraints of such systems. One of the main ap-
proaches discussed is in-place training of fully quantized DNNss.



A common technique is quantization-aware training (QAT) [8].
However, QAT compensates for the additional error introduced
by quantization by keeping a copy of the floating-point weights,
gradients, and activations in memory, and only simulates quan-
tization while still performing all updates to the floating-point
weights. As a result, QAT cannot be feasibly applied to MCUs,
where quantization is used primarily as a means to save memory,
making it impossible to store floating-point copies of tensors.

Therefore, research to date has focused heavily on finding
alternative approaches to performing QAT while preserving the
memory savings that can be achieved with quantization. To
this end, Lin et al. [S] propose a quantization scheme using a
scaling factor called quantization-aware scaling (QAS), which
they apply to the quantized gradients to compensate for the
quantization error, while Deutel et al. [6] propose to compensate
for the quantization error by normalizing the quantized gradient
updates, i.e., computing the mean and standard deviation for
each filter and row in convolutional and fully connected layers.

Besides quantization, another approach that has been heavily
focused on in recent research to reduce the memory and compu-
tational overhead required to fine-tune a DNN is to update not
all trainable weights, but only a subset. This can be done either
at the “architectural” or at the “structural” level.

At the architectural level, Tiny-transfer-learning [9] freezes
all weight tensors of the DNN and trains only the biases, while
Frankle et al. [10] train only the weights of the batch normal-
ization layers. Alternatively, the works in [5], [6], [11] focus on
fine-tuning tasks by updating only the last layers of the DNN,
leaving all other layers frozen at their initial pre-trained weights.
Others, such as Mudrakarta ef al. [12], perform fine-tuning by
introducing small additional patches of trainable weights to a
well-trained DNN.

At the structural level, Deutel et al. [6] update only a subset
of “most important” structures, i.e., filters and rows of neurons,
which the authors identify dynamically for each sample using
the size of the gradient values as a heuristic. Alternatively, Lin
et al. [5] predefine important structures within weight tensors
based on gradients observed during pre-training, allowing them
to perform sparse updates at runtime.

To the best of our knowledge, we are the first to consider
unsupervised training of DNNs on MCUs. Nevertheless, this
work builds on related work described in this section to imple-
ment a memory-efficient quantized training scheme that can be
deployed on an MCU. Specifically, our work is based on the
quantized training scheme proposed by Deutel et al. [6].

III. METHOD

Figure 1 shows our proposed approach for fully quantized,
on-device training of VAEs on MCUs. In the first step, we quan-
tize and map an untrained, predetermined VAE architecture to
our target MCU using the deployment pipeline described in [13].
Our framework considers VAEs consisting of an encoder with
convolutions and fully connected layers, and a decoder with
deconvolutions and fully connected layers (see Fig. 2). In addi-
tion, we attach a small classification head to the “mean” output
node u of the VAE encoder. This classifier can then be trained
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Figure 2. Architecture of the VAE evaluated in this work. The VAE consists
of the encoder and the decoder with the re-parametrization trick in between.
The classifier is attached to the “mean” output i of the encoder and is trained
separately.

separately from the VAE, which is trained unsupervised, on a
small, separately stored support set of labeled data either stored
in the MCU’s flash memory or a connected external memory.
In the second step, after deployment, we train the fully quan-
tized, unsupervised VAE on the MCU using data recorded by
sensor(s). For our evaluation, we simulate continuous data ac-
quisition using a fixed training data set instead of actual sensor
data. This makes our results comparable to each other and to
other work. We utilize dynamic sparse gradient updates [6] to
reduce the computational overhead of training. In the third step,
we periodically update the small classification head attached to
the encoder of our deployed VAE using the support set stored on
the MCU. Once done, we return to the second step and repeat
until the training has converged.

In the following, we discuss both VAE and the fully quantized
training approach used in this work as part of our framework.

A. Variational Autoencoders

VAE:s are a class of generative DNNs used to represent high-
dimensional complex data x with a low-dimensional learned set
of latent variables z. Unlike regular autoencoders (AEs), which
learn a deterministic mapping, VAEs model the distribution of
the latent variables z instead. However, as with autoencoders, z
can be trained unsupervised, making VAEs a suitable candidate
for on-device training on MCUs with only data and no labels.

Like AEs, VAEs consist of a decoder and an encoder network
with a bottleneck in between. Unlike AEs, the encoder in a VAE
learns a mapping of x to a Gaussian distribution g(z|x), i.e., the
encoder outputs vectors of means and standard deviations. The
decoder, on the other hand, generates new data X based on z such
that the newly generated data resembles the original data x as
close as possible.

VAEs can be trained using the evidence lower bound (ELBO)
loss, see Eq. (1), which is a lower bound on the log-likelihood
of x, where p(x|z) is the conditional distribution of z given x and
KL is the Kullback-Leibler divergence between g and p:

ELBO(g) = Ey[log p(x|z)] — KL(q(2)|p(z)) (1)

Since Gaussian distributions, like g, are generally not differen-
tiable as discrete functions, the reparameterization trick is used
to allow the application of backpropagation, see Eq. (2):

z=Uu+og, €~ AH(0,1) 2)



The reparameterization trick is based on the observation that
all Gaussian distributions are scaled and translated versions
of the normal distribution .47(0,1). In Eq. (2), this allows the
stochasticity in z to be isolated to €. As a result, backpropagation
through € is not required, and the VAE can be trained using
regular gradient descent.

In summary, in the context of VAEs, the first part of the ELBO
loss can be considered as the reconstruction term between the
original data x given to the encoder and the data X reconstructed
by the decoder, while the Kullback-Leibler divergence term
regularises z to be more stochastic.

To use a VAE for classification, we add a classifier, i.e., two
additional fully connected layers, that map from the “mean” out-
put node u of the encoder network to a class probability vector
y. In this way, the encoder can be seen as a feature extractor
that can be trained unsupervised using the decoder. To train the
classifier, we then only need a small representative set of labeled
data, since the feature extractor has already learned a mapping
to a compact representative latent space beforehand.

B. Fully-Quantized Training

To reduce the memory requirements for on-device training of
VAEs and to make their use on MCUSs feasible, we train both
the encoder and decoder fully quantized. This means that all
trainable weights, as well as all activation and gradient tensors,
are represented in memory as 8-bit unsigned integers v,, which
are sampled from the original floating-point values v, using
a linear quantization scheme v, = (vy/s) +zp with adjustable
zero-point z and scale s parameters. The only part of the VAE
that remains in floating-point is the re-parametrization trick
between the encoder and the decoder. This allows us to maximize
memory savings while still being able to calculate the ELBO
loss accurately.

During testing, we observed a high variance in the distribution
of values between different activation, gradient, weight, and bias
tensors. As a result, and as is common for quantized DNNs, we
implement different zero-point and scale parameters for each
tensor. This allows our approach to make optimal use of the
limited 8-bit integer range to support quantized tensors with
different value distributions.

Since the optimal scale and zero point of a tensor cannot be
known in advance because it depends on the training data, the
parameters must be inferred online during training. For example,
in QATs [8], the scale and zero point parameters for a given
tensor are computed based on the maximum f,x and minimum
Jmin floating-point values in the tensor. Since the ranges of the
stored values change over the course of training as the weights
of the DNN are adjusted, and also because they depend on other
aspects such as the distribution of values in the received input,
the fmax and fuin values are often tracked over time using a
moving average whose update rate « is a hyperparameter. Based
on the tracked fi.x and fiin values, the corresponding scale and
zero point parameters at state i are recalculated periodically, i.e.

to state i + 1, after each batch using Egs. (3) and (4).

Sit] = fmangsfmin (3)
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An important difference between our approach and other
QATs implementations, where the quantization is simulated
with the floating-point tensors still existing as copies, is that in
our case, all weights, activations, and gradient tensors are only
stored quantized in memory. As a result, our approach requires a
different strategy to keep track of the exact fi,x and fini, values
per tensor without the quantization error of the current scale and
zero point parameters already added.

To better describe how our method keeps track of the fiax
and fi,in values, we discuss as an example how our method is
used to compute and update the zero point and scale parameters
of the error tensor E,,_| = WnT - E,, of a fully connected or convo-
lutional layer at index n, where the - operator is either a matrix
multiplication or a 2D convolution, and W, are the trainable
weights of the layer.

When calculating E,,_ fully quantized, W,, and E,, must first
be dequantized using their respective scale parameters s, and
Se, and zero point parameters z,,, and z,, before the matrix
multiplication or 2D convolution can be performed in floating-
point. The result can then be quantized again to calculate the
output £, using s, , and z., . This process can be optimized
to be computed almost entirely in integer, see Eqgs. (5) and (6),
with only the temporary variable egfl stored as floating-point
numbers.

el = SuySe, ¥ (Wn —2,)  (en — Ze,) )
1 .
ep 1= { €£1J +Ze,_, (6)
Senfl

Since E,_; is computed value by value, finax and fiyin can
be updated iteratively by comparing whether the current value
e‘,':_l is either greater or smaller than any of the other e‘,f_l values
seen up to that point. As a result, once all elements of E,_; have
been computed, fiax and fpnin accurately store the minimum
and maximum values of E,_; in floating-point space without
the quantization error introduced by s, , and z., ,, while at
the same time not requiring the storage of complete tensors of
intermediate ef;] floating-point values in RAM.

C. Dynamic Sparse Gradient Updates

To make quantized VAE training computationally efficient,
we implement dynamic sparse gradient updates (DSGU), a tech-
nique first proposed in [6]. The technique is based on the ob-
servation that for a given sample, not all neurons in the layers
of a DNN receive a significant update, but only a subset of
neurons that are strongly activated by the sample during the for-
ward pass. Furthermore, for DNNSs, the error tensors generally
become sparser after each layer during backpropagation. As a
result, the approach estimates the importance of updating clus-
ters of neurons, i.e., rows in fully connected layers and filters in
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Figure 3. Examples of reproduced images generated by the baseline VAE
decoder for MNIST and Fashion MNIST, after 100 epochs of floating-point (£32)
and quantized (u8) training.

convolutional layers, using the absolute magnitude of the values
in the error tensors of each layer as a heuristic, see Eq. (7):

kzmaX{ Kﬂmﬁ (?Lmax—lmin)> NJJ} (M

The equation computes the number of structures k to be up-
dated during backpropagation of a given layer with N total struc-
tures between given upper and lower limits 0 < Aiyin < Amax < 1
based on the current average error e of the layer and the maxi-
mum average error emyx observed for the layer over the entire
training.

€max

IV. EVALUATION

We trained our VAE on two datasets, MNIST [14] and
Fashion-MNIST [15], on a Cortex-M4 MCU using a learning
rate of 0.001 and a batch size of 100. Both datasets have 10
classes each and consist of small grayscale images (1 x 28 x 28).
MNIST has handwritten digits, and Fashion-MNIST has dif-
ferent types of clothing. Both datasets have 60000 samples for
training and 10000 separate samples for validation. For training
the VAE, we used the full training set without the labels, while
for training the classification head we selected a balanced subset
including the labels. For validation of both the VAE and the
classification head, we used the complete labeled test set.

To evaluate their performance, we deployed the VAEs both in
floating-point and quantized form. The objective of the evalua-
tion is to (a) discuss the impact different architectural trade-offs
have on both the training performance of the VAEs as well as
their resource requirements, (b) evaluate if fully quantized train-
ing of VAEs can match the training accuracy of floating-point
training, and (c) discuss if the saving of resources achieved
by quantized training leads to feasible trade-offs that improve
the deployment of VAEs and enable unsupervised training on
MCUs.

A. Floating-point On-Device Training

We evaluate four variants of VAE architectures and discuss
the impact of changes in these variants on the ELBO loss of

the VAE and the accuracy of the classifier. The baseline VAE
architecture, variant 1, consists of two convolutional layers fol-
lowed by a fully connected layer as the encoder, and a decoder
with a fully connected layer followed by two deconvolutions,
see Fig. 2. Furthermore, the latent space between the encoder
and decoder has 10 dimensions, and the classifier consists of
two fully connected layers with a total of 400 neurons. In variant
2 (filters) we double the number of filters in the convolutions
and deconvolutions, in variant 3 (latent) we increase the size of
the latent space to 40, and in variant 4 (classes) we increase the
number of neurons in the classifier to 1920. We use these four
architectures throughout the evaluation and refer to them by the
boldface names given here.

In Figs. 4a and 4b, we show the ELBO loss and the test accu-
racy of the classifier over 100 epochs of training with the VAEs
deployed in floating-point. Furthermore, in Fig. 3, we show
examples of images reproduced by the decoder after training
as additional qualitative results. After each epoch of unlabeled
VAE training, see the ELBO loss in the figures, we froze the
encoder and decoder and then first fine-tuned the classifier using
a balanced set of labeled data for 25 epochs and then evaluated
it using the full test datasets. Additionally, in Figs. 4c and 4d we
show the training of the classifier of the baseline VAE variant
with three numbers of labeled training samples per class for both
MNIST and Fashion-MNIST.

In all our results, the ELBO loss achieved by all four architec-
tural variants converged to a similar lower bound. Furthermore,
the accuracy achieved by the classifiers eventually converged
to a similar maximum accuracy given enough training epochs.
However, we noticed in our experiments that especially increas-
ing the number of neurons in the classifier, see orange accuracy
curves, accelerated the increase in accuracy during the first 20
training epochs, while changes in the VAE architecture, i.e., the
other variants, had a negligible effect on the classifier’s accuracy.
Overall, the results we achieved with unsupervised training is
not bad, but it is about 10% lower than what could be achieved
with a CNN trained on the two datasets fully supervised. We
conclude that either the architectural changes we tested in our
results would need to be much larger to have a significant effect,
which would then make deployment on MCUs infeasible, or that
the training technique itself, i.e., using VAEs that learn a latent
space unsupervised and combining them with a classifier trained
supervised, is limited and cannot achieve the same results as
supervised training.

Additionally, we trained the classifier of the baseline VAE
variant with labeled datasets of different sizes, 10, 100, and 200
samples per class, see Fig. 4c and 4d. In the two figures, we
report both the training accuracy achieved using these small
labeled datasets and the test accuracy achieved using the full
MNIST and Fashion-MNIST test datasets. For both datasets,
training with 10 samples per class, while yielding the highest
accuracy on the training datasets, resulted in significantly lower
accuracy on the full test datasets. This is a clear indication
that while the model learned the small set of labeled samples
from the training dataset well, it did not learn to abstract, i.e.,
the classifier overfitted on the training data, ultimately leading
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Figure 4. VAEs trained in floating-point on MNIST and Fashion-MNIST. In (a) and (b), we show the ELBO loss and accuracy of four different architectural
variants, while in (c) and (d), we show the impact different numbers of labeled samples, i.e., 10, 100, and 200 samples per class, have on the accuracy achieved by

the classifier.

to much worse performance on the unseen test data. For 100
and 200 samples per class, the difference between training and
test accuracy is much smaller, as the classifier performed much
better on the test data. When using 200 samples per class, the test
accuracy is slightly higher than when using only 100 samples.
However, since the difference is relatively small for both datasets,
i.e., less than 2% for both MNIST and Fashion-MNIST, we
still argue that having about 100 labeled samples per class is a
good compromise between having the classifier learn an abstract
mapping from latent space to a class probability vector and
minimizing the number of labeled samples used for supervised
training.

B. Fully Quantized On-Device Training

For quantized training, we evaluated the same four VAE vari-
ants as for floating-point, but with all trainable weights as well
as activations and gradients fully quantized, except for the re-
parametrization trick and the ELBO loss, which we still compute
in floating-point, see Fig. 2 for reference. We also kept the classi-
fier weights in float. We did this because the number of trainable
parameters in the classifier, i.e., 400 trainable weights, is so
small compared to the number of trainable parameters in the
VAE that it does not significantly affect the overall memory
requirements or computational overhead.

Our quantization algorithm introduces three additional hy-
perparameters into the training, «, (error), ¢, (activations), o,
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Figure 5. Quantized VAEs variants trained on MNIST and Fashion-MNIST. In (a) and (b), we show the ELBO loss and accuracy of the four different architectural
variants we tested. The green and blue dashed lines denote the best loss and accuracy achieved by the baseline VAE variant when trained in floating-point, see Fig. 4.
In (c) and (d), we show results for training the baseline VAE variant with DSGU enabled. The dashed lines indicate the best loss and accuracy of the quantized

baseline VAE variant from (a) and (b).

(weights), and -, (Weight normalization), which control the
moving averages for both the fii, and fnax parameters, and
the mean and standard deviation parameters used for weight
normalization, as described in [6]. In our experiments, setting
o, = o, =0.1, or,, = 0.001, and 0, = 0.85 for MNIST and
Oporm = 0.7 for FMNIST gave the best results.

Since we already established in the last section that 100 la-
beled samples per class is a good compromise to achieve the
highest accuracy with the lowest number of labeled samples, we
performed all experiments with quantized VAE using labeled
datasets with 100 samples per class.

As with the floating-point results presented in the previous
section, we show the ELBO loss of the quantized VAE as well

as the test accuracy of the classifier for MNIST and Fashion-
MNIST in Figs. Sa and 5b. In the figures, we have also marked
the final loss and accuracy achieved by the floating-point VAE
baseline variant from Figs. 4a and 4b with green and blue dashed
vertical lines as a reference. For the four VAE variants tested,
the results show that by introducing quantization, all VAE vari-
ants generally still converged to a similar lower bound as with
floating-point during training. The direct comparison between
the quantized and floating-point baseline VAE variant shows
only a slight degradation in ELBO loss for both MNIST and
Fashion-MNIST after 100 training epochs (compare the blue
and orange loss curves in Figs. 5a and 5b with the green dashed
vertical lines). However, despite the slightly higher loss of the



quantized VAEs, the accuracy achieved by their classifiers is still
the same for both datasets, i.e., < 0.2% difference in accuracy
on the test dataset; compare the accuracy curves with the blue
dashed lines. In addition, comparing the qualitative results of the
decoder in Fig. 3, no significant degradation in the quality of the
reproductions can be seen between floating-point and quantized
training.

We also evaluated training the quantized VAE variants in
combination with dynamic sparse gradient updating (DSGU),
see Figs. 5¢ and 5d. In addition to the ELBO loss and accuracy,
we also show the average update rate per epoch, represented
by the purple curves. The update rate is dynamically calculated
for each layer based on the absolute magnitude of the error
tensor values received by the layer during backpropagation. It
determines, on a per-sample basis, the percentage of structures,
i.e., filters and rows, for which an update is computed during
backpropagation. As a result, it can significantly reduce the
latency of training, e.g., an average update rate of 60% results
in a 1.2x speedup, while an average update rate of 10% results
in a 2.0x speedup; compare the measured latency values for
u8 baseline 60% and 10% with those of u8 baseline in Fig. 6.
Furthermore, in Figs. 5c and 5d we have marked the final loss
and accuracy achieved by quantized training of the baseline VAE
variant when performing full gradient updates with green and
blue dashed lines for reference.

The results show that VAE training converged to the same loss
and accuracy for both MNIST and Fashion-MNIST with only
a fraction of the gradient updates actually computed (see the
purple curves). For both datasets, after an initial slightly higher
update rate during the first 5 epochs, the update rates quickly
plateaued at around 60% for Fashion-MNIST and slightly higher
at around 63% for MNIST. In this respect, the update rate follows
the loss curves relatively closely, comparing the purple with the
orange and blue curves, which is to be expected since the update
rate we report is derived from the error rate per sample, which
in turn is calculated from the loss.

C. Comparing Memory, Latency, and Energy

We compare the memory requirements, latency, and energy
of the quantized VAEs to their floating-point counterparts, see
Fig. 6 and Table I. We only report SRAM requirements for
memory because the VAEs are trainable, and therefore, their
weights are all placed in SRAM. We distinguish two memory
segments: activations, which contains the memory required for
activations and error tensors, and weights, which contains all
trainable weights and their gradient buffers. For energy and
latency, we report results measured on a Nucleo L4R5ZI Cortex-
M4 MCU. The MCU has 640kB SRAM and a clock speed
of 120 MHz. To measure the power consumption of the MCU,
we used a Joulescope energy analyzer, which allowed us to
sample both current and voltage at the JP5 (IDD) jumper of
the development board at 1 MHz. We also recorded the latency
of each training step as well as only the inference of each step
externally using two GPIO pins connected to the joulescope.

For the four VAE architectures, we achieved memory savings
between 49.5% and 57.5% when using quantization compared

Table I
MEMORY REQUIRED FOR TRAINING THE QUANTIZED AND FLOATING-POINT
VAES. ACTIVATIONS AND WEIGHTS ARE BOTH STORED IN RAM.

Model Type Activations [kKB]  Weights [kB]
baseline  float32  45.3 484.1

uint8 23.0 (1 49.2%) 221.0 (} 54.3%)
latent float32  46.4 742.6

uint8 23.6 (1 49.1%) 347.4 (1 53.2%)
filters float32  84.3 1201.4

uint8 36.0 (1 57.3%) 590.3 (J 50.9%)
classes float32  46.4 496.2

uint8 24.0 (1 48.3%) 236.2 (] 52.4%)
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Figure 6. Average latency, power, and energy measured for floating-point (£32)
and quantized (u8) VAEs variants on a Nucleo L4R5ZI Cortex-M4 MCU. “Total”
indicates that the measurement was taken over the course of a full training step,
while “Inference” indicates that it was taken only during the inference of a
sample. We also provide results for the quantized baseline architecture when
using DSGU and update rates of 60% and 10%, respectively.

to using floating-point to store weights and activations. As a
result, the size of the quantized models is reduced so much that
they all fit into the memory of the Nucleo L4R5ZI, compared to
the floating-point VAEs, where only the baseline (and classes)
variant requires less than 640 kB of SRAM, see Tab. I. Therefore,
we only measured the baseline floating-point model variant on
the target MCU, while for the quantized models we were able to
execute and measure all variants on device.

In addition to memory, we also analyze latency and energy
during training on the MCU for both the quantized and floating-
point VAEs. In Fig. 6, we show the average latency, performance,
and energy for a single training step, i.e., forward and backward
pass. First, it can be seen that for all evaluated models, inference
takes a significantly smaller part of the total time to perform a
training step compared to the backward pass. This is because
backpropagation requires about twice as many operations as
inference since two partial gradients with respect to error and
weights have to be computed for all trainable layers. Second,



we note that, unlike inference, where applying quantization re-
sulted in a speedup (compare the light blue bars between the 32
baseline and the u8 baseline in Fig. 6) for the complete training
step the overall latency is similar between the floating-point and
quantized VAEs.

This is a consequence of the way quantized training is im-
plemented in our proposed method; in particular, the dynamic
adaptation of the zero-point and scale parameters is necessary
only for quantized training but not for floating-point training.
To compute the fiin and fimax values for each tensor, a signifi-
cant overhead of additional compare operations is introduced.
Furthermore, our implementation uses SIMD instructions from
ARM’s digital signal processor (DSP) extension during the for-
ward pass, but not during the backward pass. This is because the
memory layout of weights and activations is highly optimized
to achieve maximum speedup during inference, but not during
training, where transposed versions of the respective operations
are computed, especially for convolutional and fully connected
layers. This makes it much more difficult to use SIMD opera-
tions without either copying data or changing the memory layout.
As aresult, our evaluation shows that the speedup achieved by
quantized inference is consumed by the additional overhead
required for quantized training.

The same observations that we described for the quantized
baseline VAE variant in Fig. 6 can also be observed for the
other quantized VAE variants, i.e., classes, filters, and latent. We
want to particularly explain the results of the filters VAE variant,
which show that especially increasing the number of filters in
the convolutions and deconvolutions has a significant impact on
the latency since these operations are computationally expensive
compared to increasing the dimensions of the latent space or the
number of neurons in the classifier, which have a much smaller
impact on the latency.

To summarize our results, our proposed training approach for
quantized VAEs can achieve the same accuracy and ELBO loss
as floating-point training, while achieving significant memory
savings of up to 57%. In our experiments, while quantization
did speed up inference, it did not provide a significant speedup
(or energy savings) for training due to the overhead of updating
the zero-point and scaling parameters. Instead, we used DSGU
to speed up training, on average by a factor of 1.2 in our ex-
periments. In conclusion, we argue that for many applications,
quantized training of VAEs on MCUs is advantageous. We ar-
gue that during the deployment of a VAE, it is likely that the
model will be used most of the time to perform inference on
samples, and only sporadically trained in between. As a result,
the lower latency of quantized inference, DSGU, and the sig-
nificant memory savings that can be achieved by our proposed
quantized training approach offer a better tradeoff for on-device
VAE training compared to floating-point training.

V. CONCLUSION

In this work, we proposed a method for unsupervised training
of fully quantized DNNs on MCUs using VAEs. We evaluated
our method on two datasets, MNIST and Fashion-MNIST, and
discussed different architectural variants as well as the impact

of quantization on accuracy, memory, latency, and energy. Our
results show that by introducing quantization to integer values,
VAE:s can still be trained with the same accuracy as floating-
point values, while requiring significantly less memory. This
makes deploying and training VAEs on a wide range of different
MCUs feasible.
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