
Energy-efficient Deployment of Deep Learning

Applications on Cortex-M based Microcontrollers

using Deep Compression

Mark Deutel1, Philipp Woller2, Christopher Mutschler2 and Jürgen Teich1

1 Friedrich-Alexander-Universität Erlangen-Nürnberg
2 Fraunhofer Institute for Integrated Circuits, Fraunhofer IIS, Nürnberg

TinyML – Machine Learning on the Edge

Motivation

Efficiency

• Processing of data close to the
sensor

• Re-usage of (hardware) resources
required to drive the sensor

Reliability

• No communication via error prone
network required

• Short, predictable “round-trip time"

Cost

• Exploitation of already available
cheap consumer-grade hardware

• Low energy footprint

Security

• Possibly confidential data is
processed on the sensor node

• No connection to external cloud or
server required

TinyML

Mark Deutel et. al. | Energy-efficient Deployment of Deep Learning Applications on Cortex-M based Microcontrollers 2MBMV 2023

Motivation

Deep Neural Network Architectures1

Metrics AlexNet VGG 16 ResNet 50

Layers 8 16 54

Total Weights 61 M 138 M 25.5 M

Total MACs* 724 M 15.5 G 3.9 G

1. Sze, Vivienne, Yu-Hsin Chen, Tien-Ju Yang, and Joel Emer. „Efficient

Processing of Deep Neural Networks: A Tutorial and Survey“. 2017.

Target Micro Controllers

Metrics Raspberry Pi Pico Arduino Nano 33

BLE Sense

Processor ARM Cortex M0+ ARM Cortex M4

Clock Speed 133 MHz 64 MHz

Flash memory 2 MB 1 MB

SRAM 256 KB 256 KB

Significant gap between DNN requirements and available resources

• Low processor speed vs. large number of mathematical operations

• Strict memory limitations vs. large number of weights and big inputs/feature maps

• High precision floating point datatypes vs. hardware often focused on integer arithmetic

* Multiply-Accumulate Operations

DNN Deployment on Microcontrollers – An easy task?

Mark Deutel et. al. | Energy-efficient Deployment of Deep Learning Applications on Cortex-M based Microcontrollers 3MBMV 2023

DNN Compression

and Deployment

Energy

Power

Inference Time

Accuracy

ROM
Requirements

RAM
Requirements

Deployment on Target SystemDNN Architecture, Dataset

4

Motivation
DNN Deployment on Microcontrollers – An Matter of Optimization

Mark Deutel et. al. | Energy-efficient Deployment of Deep Learning Applications on Cortex-M based Microcontrollers MBMV 2023 4

Deployment of DNNs on Microcontrollers
A Fully-Automated End-to-End Pipeline for DNN Deployment

Neural Network

Pruning

Pruning Strategy

 How to prune?

 What to prune?

 When to prune?

Weight

Quantization

Quantization Model

 How to perform?

 When to apply?

Deployment on

Target

Data Representation

 Optimized Memory

Layout

Target Code Generation

 Convert Graph to Code

 Graph Optimizations

 Algorithmic Optimization

Dataset,

Model,

Hyperparameter

DNN Training Post Processing

Deployable

Model

Suggest next set of Hyperparameters (parameter space) using Multi-Objective Optimization

based on performance metrics (objective space: accuracy, ROM, RAM, FLOPS)

Mark Deutel et. al. | Energy-efficient Deployment of Deep Learning Applications on Cortex-M based Microcontrollers 5MBMV 2023

Agenda

• Deployment of DNNs on Microcontroller Targets

• Network Pruning

• Weight Quantization

• Microcontroller Deployment

• Evaluation of End-To-End Training, Compression and Deplyoment

• Pruning and Quantization

• From Size Reduction to Memory Savings

• Deployment on Microcontrollers

• Conclusion

Mark Deutel et. al. | Energy-efficient Deployment of Deep Learning Applications on Cortex-M based Microcontrollers 6MBMV 2023

Deployment of DNNs on Microcontroller
Targets

Mark Deutel et. al. | Energy-efficient Deployment of Deep Learning Applications on Cortex-M based Microcontrollers 7MBMV 2023

Element-Wise (Unstructured) Pruning1

• Set single weights to zero

• Sparse data structures remain at the end of training

Structured Pruning2

• Set whole structures of weights to zero

• Structures (and their dependencies) can be removed

at the end of training

Network Pruning
Pruning Strategy

Understanding: Neural Networks are extremely over-parametrized and have a lot of redundancies in their parameters

2 0 4 9

11 2 3 0

2 3 4 5

3 14 9 0

2 0 2 22

11 2 4 0

2 3 4 7

3 14 9 2

2 0 6 0

11 2 9 4

2 3 0 7

0 0 9 2

2 3 4 9

11 2 3 16

2 3 4 5

3 14 9 2

0 0 0 0

11 2 4 0

2 3 4 0

3 14 9 0

2 8 6 1

11 2 9 4

2 3 4 7

3 14 9 2

1. LeCun, Yann, John S Denker, and Sara A Solla. “Optimal Brain Damage“, 1989.

2. Anwar, Sajid, Kyuyeon Hwang, and Wonyong Sung. “Structured Pruning of Deep Convolutional Neural Networks“. 2015.

Mark Deutel et. al. | Energy-efficient Deployment of Deep Learning Applications on Cortex-M based Microcontrollers 8MBMV 2023

• Are used as an approximation to decide which structures/elements to remove.

• L-Norm2 based approximations

• Higher magnitude or norm of elements/structures implies higher importance

• Gradient1 based approximates

• Steeper backpropagation gradient implies higher learning activity

• Average percentage of Zeros3 (ApoZ) in activation tensors

• Exploits sparsity in activation tensors introduced by ReLU activation functions

• More recently: Approaches based on explainable AI4

Network Pruning
Pruning Heuristics

1. Han, Song, Jeff Pool, John Tran, und William J. Dally. “Learning both Weights and Connections for Efficient Neural Networks“. 2015.

2. Molchanov, Pavlo, Stephen Tyree, Tero Karras, Timo Aila, and Jan Kautz. “Pruning Convolutional Neural Networks for Resource Efficient Inference“. 2017.

3. Hu, Hengyuan, Rui Peng, Yu-Wing Tai, and Chi-Keung Tang. “Network Trimming: A Data-Driven Neuron Pruning Approach towards Efficient Deep Architectures“. 2016.

4. Sabih, Muhammad, Frank Hannig, and Juergen Teich. “Utilizing explainable AI for quantization and pruning of deep neural networks.“ 2020.

Mark Deutel et. al. | Energy-efficient Deployment of Deep Learning Applications on Cortex-M based Microcontrollers 9MBMV 2023

• Defines when and how often pruning is applied during training

• Iterative Pruning:

• Prune multiple times during training

• Increase sparsity starting with a low value

• Automated Gradual Pruning1 (AGP) algorithm

• One-Shot Pruning:

• Prune one time at the end of training

• Enforce all sparsity at once

Network Pruning
Pruning Schedule

1. Zhu, Michael, and Suyog Gupta. “To prune, or not to prune: exploring the efficacy of pruning for model compression“. 2017.

Mark Deutel et. al. | Energy-efficient Deployment of Deep Learning Applications on Cortex-M based Microcontrollers 10MBMV 2023

Weight Quantization
Quantization Schema

Instead of using high-precision floating-point arithmetic to store trained weights, map them to integer space instead

• Affine, linear mapping from 32-bit floating point space to 8-bit unsigned integer space using (trainable) scale and

zero point parameters1

• Both weight and activations tensors can be quantized (i.e. partial and full quantization)

𝑣𝑎𝑙𝑢𝑖𝑛𝑡8 = clamp
𝑣𝑎𝑙𝑓𝑝32

𝑠𝑐𝑎𝑙𝑒
+ 𝑧𝑒𝑟𝑜𝑝𝑜𝑖𝑛𝑡

𝑠𝑐𝑎𝑙𝑒 =
𝑑𝑎𝑡𝑎𝑚𝑎𝑥 − 𝑑𝑎𝑡𝑎𝑚𝑖𝑛

255
, 0 ≤ 𝑧𝑒𝑟𝑜𝑝𝑜𝑖𝑛𝑡 ≤ 255

0 255𝑧𝑒𝑟𝑜𝑝𝑜𝑖𝑛𝑡

0 𝑑𝑎𝑡𝑎𝑚𝑎𝑥𝑑𝑎𝑡𝑎𝑚𝑖𝑛

𝑓𝑙𝑜𝑎𝑡32

𝑢𝑖𝑛𝑡8

Standardization of

activation tensors

is a great idea

1. see https://onnxruntime.ai/docs/performance/quantization.html

Mark Deutel et. al. | Energy-efficient Deployment of Deep Learning Applications on Cortex-M based Microcontrollers 11MBMV 2023

Post Training Static Quantization1

• Perform Quantization once training has finished

• Use evaluation dataset from training to approximate

zero points and scales

Quantization Aware Training2

• Fake quantized trainable weights and activations

during training

• Use quantized parameters during forward passes to

emulate quantization

Weight Quantization
Quantization Strategy

1. Krishnamoorthi, Raghuraman. „Quantizing deep convolutional networks for efficient inference: A whitepaper“. 2018.

2. Jacob, Benoit, Skirmantas Kligys, Bo Chen, Menglong Zhu, Matthew Tang, Andrew Howard, Hartwig Adam, and Dmitry Kalenichenko. „Quantization and Training of Neural Networks for Efficient Integer-

Arithmetic-Only Inference“. 2017.

Mark Deutel et. al. | Energy-efficient Deployment of Deep Learning Applications on Cortex-M based Microcontrollers 12MBMV 2023

+ Easy to add into an existing training and deployment

process

+ Inexpensive and fast to perform

+ Network becomes more robust towards quantization

+ Better approximation of quantization parameters

- Quantization parameters are only approximated

(using a set of sample inputs)

- Quantization not considered during training

- Training becomes more expensive

- Has to be integrated into training process

Microcontroller Deployment
Overview

Conversion to
Intermediate

Representation

• Convert graph-based (ONNX) model to target-platform-based representation

• Weight tensors  Data segment (Flash utilization)

• Network structure  “Function” Code segment (Flash utilization)

• Activation tensors  Heap (SRAM consumption)

Memory
Allocation

• Allocate byte arrays for both weight and activation tensors

• Dynamic memory allocation for activation tensors can be avoided by simulating offline

 No malloc required at runtime

Code
Generation +
Compilation

• Emit compilable C-code representing the DNN (“ahead-of-time”)

• Compile and link with runtime library (optimized for each target platform)

• Implements common DNN layers based on the ONNX specification

Mark Deutel et. al. | Energy-efficient Deployment of Deep Learning Applications on Cortex-M based Microcontrollers 13MBMV 2023

Microcontroller Deployment
Deployment Pipeline

Mark Deutel et. al. | Energy-efficient Deployment of Deep Learning Applications on Cortex-M based Microcontrollers 14MBMV 2023

Deployable

Binary

ONNX Model File

(Graph-based

Representation)

Generate C-Code for

Target System

Code Fragment

(C-Code File)

Infer Required

Heap-Size

Fixed Size Data

Arrays

(C-Code File)

Graph-based

Optimizations,

im2col mapping

for Conv. Layers

Shape Inference

Conversion to

Intermediate

Representation

Intermediate

Representation

(Descriptors)
Compile and Link

Runtime

Library

Evaluation

Mark Deutel et. al. | Energy-efficient Deployment of Deep Learning Applications on Cortex-M based Microcontrollers 15MBMV 2023

Evaluation
Pruning and Quantization of DNNs

Mark Deutel et. al. | Energy-efficient Deployment of Deep Learning Applications on Cortex-M based Microcontrollers 16MBMV 2023

Evaluation
From Size Reduction to Memory Savings

Mark Deutel et. al. | Energy-efficient Deployment of Deep Learning Applications on Cortex-M based Microcontrollers 17MBMV 2023

Evaluation
Deployment on Microcontrollers

Mark Deutel et. al. | Energy-efficient Deployment of Deep Learning Applications on Cortex-M based Microcontrollers 18MBMV 2023

Conclusion

Mark Deutel et. al. | Energy-efficient Deployment of Deep Learning Applications on Cortex-M based Microcontrollers 19MBMV 2023

Conclusion

• DNN Compression and Deployment Pipeline:

• Three stages: Network Pruning, Weight Quantization, Deployment

• Target: Cortex-M processors

• Conclusions/Recommendations:

• Pruning can be combined with quantization to save memory and latency.

• Structural Pruning in combination with Post Training Static Quantization (PTSQ)

• Quantization Aware Training is a good alternative in situations where PTSQ fails

• Model compression combined with algorithmic and instruction set-based optimizations enables efficient deployment on

microcontrollers

• Most energy can be saved by decreasing latency, the smallest system that can meet the target requirements.

Mark Deutel et. al. | Energy-efficient Deployment of Deep Learning Applications on Cortex-M based Microcontrollers 20MBMV 2023

Thank you for

your attention!

Contact: mark.deutel@fau.de

