

Energy-efficient Deployment of Deep Learning Applications on Cortex-M based Microcontrollers using Deep Compression

Mark Deutel¹, Philipp Woller², Christopher Mutschler² and Jürgen Teich¹ ¹ Friedrich-Alexander-Universität Erlangen-Nürnberg ² Fraunhofer Institute for Integrated Circuits, Fraunhofer IIS, Nürnberg

Motivation

TinyML – Machine Learning on the Edge

Efficiency

- Processing of data close to the sensor
- Re-usage of (hardware) resources required to drive the sensor

Reliability

- No communication via error prone network required
- Short, predictable "round-trip time"

Cost

- Exploitation of already available cheap consumer-grade hardware
- Low energy footprint

Security

TinyML

- Possibly confidential data is processed on the sensor node
- No connection to external cloud or server required

Motivation

Fraunhofer Gesign

DNN Deployment on Microcontrollers - An easy task?

Deep Neural Network Architectures ¹				
Metrics	AlexNet	VGG 16	ResNet 50	
# Layers	8	16	54	
Total Weights	61 M	138 M	25.5 M	
Total MACs*	724 M	15.5 G	3.9 G	

1. Sze, Vivienne, Yu-Hsin Chen, Tien-Ju Yang, and Joel Emer. "Efficient Processing of Deep Neural Networks: A Tutorial and Survey". 2017.

Target Micro Controllers				
Metrics	Raspberry Pi Pico	Arduino Nano 33 BLE Sense		
Processor	ARM Cortex M0+	ARM Cortex M4		
Clock Speed	133 MHz	64 MHz		
Flash memory	2 MB	1 MB		
SRAM	256 KB	256 KB		

Significant gap between DNN requirements and available resources

- Low processor speed vs. large number of mathematical operations
- Strict memory limitations vs. large number of weights and big inputs/feature maps
- High precision floating point datatypes vs. hardware often focused on integer arithmetic

* Multiply-Accumulate Operations

Mark Deutel et. al. | Energy-efficient Deployment of Deep Learning Applications on Cortex-M based Microcontrollers

Motivation

DNN Deployment on Microcontrollers – An Matter of Optimization

4

Deployment of DNNs on Microcontrollers

A Fully-Automated End-to-End Pipeline for DNN Deployment

Suggest next set of Hyperparameters (parameter space) using Multi-Objective Optimization based on performance metrics (objective space: accuracy, ROM, RAM, FLOPS)

- Deployment of DNNs on Microcontroller Targets
 - Network Pruning
 - Weight Quantization
 - Microcontroller Deployment
- Evaluation of End-To-End Training, Compression and Deplyoment
 - Pruning and Quantization
 - From Size Reduction to Memory Savings
 - Deployment on Microcontrollers
- Conclusion

Deployment of DNNs on Microcontroller Targets

Network Pruning

Pruning Strategy

Understanding: Neural Networks are extremely over-parametrized and have a lot of redundancies in their parameters

Element-Wise (Unstructured) Pruning¹

- Set single weights to zero
- Sparse data structures remain at the end of training

Structured Pruning²

- Set whole structures of weights to zero
- Structures (and their dependencies) can be removed at the end of training

- 1. LeCun, Yann, John S Denker, and Sara A Solla. "Optimal Brain Damage", 1989.
- 2. Anwar, Sajid, Kyuyeon Hwang, and Wonyong Sung. "Structured Pruning of Deep Convolutional Neural Networks". 2015.

8

Pruning Heuristics

- Are used as an approximation to decide which structures/elements to remove.
 - **L-Norm**² based approximations
 - Higher magnitude or norm of elements/structures implies higher importance
 - **Gradient**¹ based approximates
 - Steeper backpropagation gradient implies higher learning activity
 - Average percentage of Zeros³ (ApoZ) in activation tensors
 - Exploits sparsity in activation tensors introduced by ReLU activation functions
 - More recently: Approaches based on **explainable Al**⁴

- 1. Han, Song, Jeff Pool, John Tran, und William J. Dally. "Learning both Weights and Connections for Efficient Neural Networks". 2015.
- 2. Molchanov, Pavlo, Stephen Tyree, Tero Karras, Timo Aila, and Jan Kautz. "Pruning Convolutional Neural Networks for Resource Efficient Inference". 2017.
- 3. Hu, Hengyuan, Rui Peng, Yu-Wing Tai, and Chi-Keung Tang. "Network Trimming: A Data-Driven Neuron Pruning Approach towards Efficient Deep Architectures". 2016.
- 4. Sabih, Muhammad, Frank Hannig, and Juergen Teich. "Utilizing explainable AI for quantization and pruning of deep neural networks." 2020.

9

Network Pruning

Pruning Schedule

- Defines when and how often pruning is applied during training
- Iterative Pruning:
 - Prune multiple times during training
 - · Increase sparsity starting with a low value
 - Automated Gradual Pruning¹ (AGP) algorithm
- One-Shot Pruning:
 - Prune one time at the end of training
 - Enforce all sparsity at once

1. Zhu, Michael, and Suyog Gupta. "To prune, or not to prune: exploring the efficacy of pruning for model compression". 2017.

Fraunhofer Gesign

Quantization Schema

Instead of using high-precision floating-point arithmetic to store trained weights, map them to integer space instead

- Affine, linear mapping from 32-bit floating point space to 8-bit unsigned integer space using (trainable) scale and zero point parameters¹
- Both weight and activations tensors can be quantized (i.e. partial and full quantization)

Mark Deutel et. al. | Energy-efficient Deployment of Deep Learning Applications on Cortex-M based Microcontrollers

Weight Quantization

Quantization Strategy

Post Training Static Quantization¹

- Perform Quantization once training has finished
- Use evaluation dataset from training to approximate zero points and scales
- + Easy to add into an existing training and deployment process
- + Inexpensive and fast to perform
- Quantization parameters are only approximated (using a set of sample inputs)
- Quantization not considered during training

Quantization Aware Training²

- Fake quantized trainable weights and activations during training
- Use quantized parameters during forward passes to emulate quantization
- + Network becomes more robust towards quantization
- + Better approximation of quantization parameters
- Training becomes more expensive
- Has to be integrated into training process

^{1.} Krishnamoorthi, Raghuraman. "Quantizing deep convolutional networks for efficient inference: A whitepaper". 2018.

Jacob, Benoit, Skirmantas Kligys, Bo Chen, Menglong Zhu, Matthew Tang, Andrew Howard, Hartwig Adam, and Dmitry Kalenichenko. "Quantization and Training of Neural Networks for Efficient Integer-Arithmetic-Only Inference". 2017.

Microcontroller Deployment

Overview

Microcontroller Deployment

Deployment Pipeline

Mark Deutel et. al. | Energy-efficient Deployment of Deep Learning Applications on Cortex-M based Microcontrollers

LeNet, MNIST, Structural Pruning and Quantization

Deployment on Microcontrollers

Conclusion

Mark Deutel et. al. | Energy-efficient Deployment of Deep Learning Applications on Cortex-M based Microcontrollers

MBMV 2023

Conclusion

• DNN Compression and Deployment Pipeline:

- Three stages: Network Pruning, Weight Quantization, Deployment
- Target: Cortex-M processors
- Conclusions/Recommendations:
 - Pruning can be combined with quantization to save memory and latency.
 - Structural Pruning in combination with Post Training Static Quantization (PTSQ)
 - Quantization Aware Training is a good alternative in situations where PTSQ fails
 - Model compression combined with algorithmic and instruction set-based optimizations enables efficient deployment on microcontrollers
 - Most energy can be saved by decreasing latency, the smallest system that can meet the target requirements.

Friedrich-Alexander-Universität Technische Fakultät

Thank you for your attention!

Contact: mark.deutel@fau.de