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TinyML – Machine Learning on the Edge

Motivation

Efficiency

• Processing of data close to the 
sensor

• Re-usage of (hardware) resources 
required to drive the sensor

Reliability

• No communication via error prone 
network required

• Short, predictable “round-trip time" 

Cost

• Exploitation of already available 
cheap consumer-grade hardware

• Low energy footprint

Security

• Possibly confidential data is 
processed on the sensor node

• No connection to external cloud or 
server required

TinyML
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Motivation

Deep Neural Network Architectures1

Metrics AlexNet VGG 16 ResNet 50

# Layers 8 16 54

Total Weights 61 M 138 M 25.5 M

Total MACs* 724 M 15.5 G 3.9 G

1. Sze, Vivienne, Yu-Hsin Chen, Tien-Ju Yang, and Joel Emer. „Efficient 

Processing of Deep Neural Networks: A Tutorial and Survey“. 2017.

Target Micro Controllers

Metrics Raspberry Pi Pico Arduino Nano 33 

BLE Sense

Processor ARM Cortex M0+ ARM Cortex M4

Clock Speed 133 MHz 64 MHz

Flash memory 2 MB 1 MB

SRAM 256 KB 256 KB

Significant gap between DNN requirements and available resources

• Low processor speed vs. large number of mathematical operations

• Strict memory limitations vs. large number of weights and big inputs/feature maps

• High precision floating point datatypes vs. hardware often focused on integer arithmetic

* Multiply-Accumulate Operations

DNN Deployment on Microcontrollers – An easy task?
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DNN Compression

and Deployment

Energy

Power

Inference Time

Accuracy

ROM
Requirements

RAM
Requirements

Deployment on Target SystemDNN Architecture, Dataset

4

Motivation
DNN Deployment on Microcontrollers – An Matter of Optimization
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Deployment of DNNs on Microcontrollers
A Fully-Automated End-to-End Pipeline for DNN Deployment

Neural Network 

Pruning

Pruning Strategy

 How to prune?

 What to prune?

 When to prune?

Weight 

Quantization

Quantization Model

 How to perform?

 When to apply?

Deployment on 

Target

Data Representation

 Optimized Memory 

Layout

Target Code Generation

 Convert Graph to Code

 Graph Optimizations

 Algorithmic Optimization

Dataset, 

Model,

Hyperparameter

DNN Training Post Processing

Deployable

Model

Suggest next set of Hyperparameters (parameter space) using Multi-Objective Optimization 

based on performance metrics (objective space: accuracy, ROM, RAM, FLOPS) 
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Agenda

• Deployment of DNNs on Microcontroller Targets

• Network Pruning

• Weight Quantization

• Microcontroller Deployment

• Evaluation of End-To-End Training, Compression and Deplyoment

• Pruning and Quantization

• From Size Reduction to Memory Savings

• Deployment on Microcontrollers

• Conclusion
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Deployment of DNNs on Microcontroller 
Targets
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Element-Wise (Unstructured) Pruning1 

• Set single weights to zero

• Sparse data structures remain at the end of training

Structured Pruning2

• Set whole structures of weights to zero

• Structures (and their dependencies) can be removed 

at the end of training

Network Pruning
Pruning Strategy

Understanding: Neural Networks are extremely over-parametrized and have a lot of redundancies in their parameters
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1. LeCun, Yann, John S Denker, and Sara A Solla. “Optimal Brain Damage“, 1989.

2. Anwar, Sajid, Kyuyeon Hwang, and Wonyong Sung. “Structured Pruning of Deep Convolutional Neural Networks“. 2015.
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• Are used as an approximation to decide which structures/elements to remove.

• L-Norm2 based approximations

• Higher magnitude or norm of elements/structures implies higher importance

• Gradient1 based approximates

• Steeper backpropagation gradient implies higher learning activity

• Average percentage of Zeros3 (ApoZ) in activation tensors

• Exploits sparsity in activation tensors introduced by ReLU activation functions

• More recently: Approaches based on explainable AI4

Network Pruning
Pruning Heuristics

1. Han, Song, Jeff Pool, John Tran, und William J. Dally. “Learning both Weights and Connections for Efficient Neural Networks“. 2015.

2. Molchanov, Pavlo, Stephen Tyree, Tero Karras, Timo Aila, and Jan Kautz. “Pruning Convolutional Neural Networks for Resource Efficient Inference“. 2017.

3. Hu, Hengyuan, Rui Peng, Yu-Wing Tai, and Chi-Keung Tang. “Network Trimming: A Data-Driven Neuron Pruning Approach towards Efficient Deep Architectures“. 2016.

4. Sabih, Muhammad, Frank Hannig, and Juergen Teich. “Utilizing explainable AI for quantization and pruning of deep neural networks.“ 2020.
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• Defines when and how often pruning is applied during training

• Iterative Pruning: 

• Prune multiple times during training

• Increase sparsity starting with a low value

• Automated Gradual Pruning1 (AGP) algorithm 

• One-Shot Pruning: 

• Prune one time at the end of training

• Enforce all sparsity at once

Network Pruning
Pruning Schedule

1. Zhu, Michael, and Suyog Gupta. “To prune, or not to prune: exploring the efficacy of pruning for model compression“. 2017.
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Weight Quantization
Quantization Schema

Instead of using high-precision floating-point arithmetic to store trained weights, map them to integer space instead

• Affine, linear mapping from 32-bit floating point space to 8-bit unsigned integer space using (trainable) scale and 

zero point parameters1

• Both weight and activations tensors can be quantized (i.e. partial and full quantization)

𝑣𝑎𝑙𝑢𝑖𝑛𝑡8 = clamp
𝑣𝑎𝑙𝑓𝑝32

𝑠𝑐𝑎𝑙𝑒
+ 𝑧𝑒𝑟𝑜𝑝𝑜𝑖𝑛𝑡

𝑠𝑐𝑎𝑙𝑒 =
𝑑𝑎𝑡𝑎𝑚𝑎𝑥 − 𝑑𝑎𝑡𝑎𝑚𝑖𝑛

255
, 0 ≤ 𝑧𝑒𝑟𝑜𝑝𝑜𝑖𝑛𝑡 ≤ 255

0 255𝑧𝑒𝑟𝑜𝑝𝑜𝑖𝑛𝑡

0 𝑑𝑎𝑡𝑎𝑚𝑎𝑥𝑑𝑎𝑡𝑎𝑚𝑖𝑛

𝑓𝑙𝑜𝑎𝑡32

𝑢𝑖𝑛𝑡8

Standardization of 

activation tensors 

is a great idea

1. see https://onnxruntime.ai/docs/performance/quantization.html
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Post Training Static Quantization1

• Perform Quantization once training has finished

• Use evaluation dataset from training to approximate 

zero points and scales

Quantization Aware Training2

• Fake quantized trainable weights and activations 

during training

• Use quantized parameters during forward passes to 

emulate quantization

Weight Quantization
Quantization Strategy

1. Krishnamoorthi, Raghuraman. „Quantizing deep convolutional networks for efficient inference: A whitepaper“. 2018.

2. Jacob, Benoit, Skirmantas Kligys, Bo Chen, Menglong Zhu, Matthew Tang, Andrew Howard, Hartwig Adam, and Dmitry Kalenichenko. „Quantization and Training of Neural Networks for Efficient Integer-

Arithmetic-Only Inference“. 2017.
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+ Easy to add into an existing training and deployment 

process

+ Inexpensive and fast to perform

+ Network becomes more robust towards quantization

+ Better approximation of quantization parameters

- Quantization parameters are only approximated 

(using a set of sample inputs)

- Quantization not considered during training

- Training becomes more expensive

- Has to be integrated into training process



Microcontroller Deployment
Overview

Conversion to 
Intermediate 

Representation

• Convert graph-based (ONNX) model to target-platform-based representation

• Weight tensors        Data segment (Flash utilization)

• Network structure    “Function” Code segment (Flash utilization)

• Activation tensors   Heap (SRAM consumption)

Memory 
Allocation

• Allocate byte arrays for both weight and activation tensors

• Dynamic memory allocation for activation tensors can be avoided by simulating offline

 No malloc required at runtime

Code 
Generation + 
Compilation

• Emit compilable C-code representing the DNN (“ahead-of-time”)

• Compile and link with runtime library (optimized for each target platform)

• Implements common DNN layers based on the ONNX specification
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Microcontroller Deployment
Deployment Pipeline
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Deployable 

Binary

ONNX Model File 

(Graph-based 

Representation)

Generate C-Code for 

Target System

Code Fragment 

(C-Code File)

Infer Required 

Heap-Size

Fixed Size Data 

Arrays 

(C-Code File)

Graph-based 

Optimizations, 

im2col mapping 

for Conv. Layers

Shape Inference

Conversion to 

Intermediate 

Representation

Intermediate 

Representation 

(Descriptors)
Compile and Link

Runtime 

Library



Evaluation
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Evaluation
Pruning and Quantization of DNNs

Mark Deutel et. al. | Energy-efficient Deployment of Deep Learning Applications on Cortex-M based Microcontrollers 16MBMV 2023



Evaluation
From Size Reduction to Memory Savings
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Evaluation
Deployment on Microcontrollers

Mark Deutel et. al. | Energy-efficient Deployment of Deep Learning Applications on Cortex-M based Microcontrollers 18MBMV 2023



Conclusion
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Conclusion

• DNN Compression and Deployment Pipeline:

• Three stages: Network Pruning, Weight Quantization, Deployment

• Target: Cortex-M processors

• Conclusions/Recommendations:

• Pruning can be combined with quantization to save memory and latency.

• Structural Pruning in combination with Post Training Static Quantization (PTSQ)

• Quantization Aware Training is a good alternative in situations where PTSQ fails

• Model compression combined with algorithmic and instruction set-based optimizations enables efficient deployment on 

microcontrollers

• Most energy can be saved by decreasing latency, the smallest system that can meet the target requirements.
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Thank you for 

your attention!

Contact: mark.deutel@fau.de


